Abstract
This article shows the recent developments on orthogonal drawings of graphs which have applications for the automation of VLSI circuit design. Meanwhile, a number of problem are posed for further research.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kuratowski K. Sur le Problem des Coubes Gauches en Topologie.Fund. Math., 1930, 15: 271–283.
MacLane S. A structural characterization of planar combinatorial graphs.Duke Math. J., 1937, 3: 460–472.
MacLane S. A combinatorial condition for planar graphs.Fund. Math., 1937, 28: 22–32.
Whitney H. Non-separable and planar graph.Trans. AMS, 1932, 34: 339–162.
Whitney H. Planar graphs.Fund. Math., 1933, 21: 73–84.
Whitney H. On regular closed curves in the plane.Compositio Math., 1937, 4: 276–284.
Wu W T. The realization of complexies in the Euclidean space.Acta Math. Sinica, 1955, 5: 505–452 (in Chinese),
Wu W T. A theory of Imbedding, Immersion, and Isotopy of Polytopes in an Euclidean Space. Science Press, Beijing, 1965.
Wu W T. Planar embedding of linear graphs.Sci. Bull. (KEXUETONGBAO), 1974, 19(2): 226–228 (in Chinese).
Wu W T. Rational Homotopy Type. Lect. Notes in Math. 1246, Springer, New York/Heidelberg/Berlin, 1987.
Wu W T. Mathematical problems in the design of integrated circuits.Math. Theory Practice, 1973, 1: 20–40 (in Chinese).
Wu W T. On the planar embedding of linear graphs I.J. Syst. Sci. Math, 1985, 5: 290–320.
Wu W T. On the planar embedding of linear graphs II.J. Syst. Sci. Math., 1986, 6: 23–35.
Wu W T. The Realization of Polytopes in the Euclidean Space. Science Press, Beijing, 1978 (in Chinese).
Wu W T. Selected Papers of Wu Wenjun. Shandong Education Press, Jinan, 1986 (in Chinese).
Wu W T. On Mathematical Mechanization on by Wu Wenjun. Shandong Education Press, Jinan, 1995 (in Chinese).
Liu Y P. Embeddability Theory of Graphs. Science Press, Beijing, 1994, (in Chinese).
Liu Y P. Embeddability in Graphs. Kluwer, Dordrecht/Boston/London, 1995.
Tutte W T. A class of Abelian groups.Canad. J. Math., 1956, 8: 13–28.
Tutte W T. Toward a theory of crossing numbers.J. Comb. Theory, 1970, 8: 45–53.
Liu Y P. Module 2 programming and planar embedding.Acta Math. Appl Sinica, 1978, 1: 395–406 (in Chinese).
Liu Y P. On the linearity of testing planarity of a graph. Comb. Optim. CORR84-4, University of Waterloo, 1984; Also inChinese Ann. Math., 1986, 7B: 425–434.
Liu Y P. A new approach to the linearity of testing planarity of graphs. Report, Rutgers University, 1984; Also inActa Math. Appl. Sinica, Eng. Series, 1988, 4: 257–265.
Rosenstiehl P. Preuve algebrique du critere de planarite de Wu(Wenjun)-Liu(Yanpei).Ann. Discrete Math., 1980, 9: 67–78.
Cook S A. The complexity of theorem proving procedures. InProc. 3rd ACM Symp. Comput., 1971, pp.151–158.
Garey M R, Johnson D S. Computer and Intractability-A Guide to the Theory of NP-Completeness, Freeman W H (eds.), San Francisco, 1979.
Lipton R J, Tarjan R E. A separator theorem for planar graphs.SIAM J. Appl. Math., 1979, 36: 177–189.
Lipton R J, Tarjan R E. Applications of a planar separator theorem.SIAM J. Comput., 1980, 9: 615–627.
Liu Y P. Theory of Rectilinear Layouts. China Railway Publishing House, Beijing, 1997 (in Chinese).
Hopcroft J, Tarjan R. Isomorphism of planar graphs. InComplexity of Computer Computations, Miller Ret al. (eds.), Plenum, 1972, pp.131–152.
Hopcroft J, Tarjan R. Dividing a graph into triconnected components.SIAM J. Comput., 1973, 2: 135–158.
Hopcroft J, Tarjan R. Efficient planarity testing.J. ACM., 1974, 21: 549–568.
Auslander L, Parter S V. On imbedding graphs in sphere.J. Math. Mech., 1961, 10: 517–523.
Becker B, Hotz G. On the optimal layout of planar graphs with fixed boundary.SIAM J. Comput., 1987, 16: 946–972.
Dambit Ja. Embedding of a graph into the plane.Latvian Math., 1966, Yearbook 2: 79–93.
Demoucron G, Malgrange Y, Pertuiset R. Graphe planaires, reconnaissance et construction de representations planaires topologiques.Rev. Francaise Recherche Operationnelle, 1964, 8: 33–47.
Deo N. Note on Hopcroft and Tarjan’s planarity algorithm.J. ACM, 1976, 33: 74–75.
Engle W L. An algorithm for embedding graphs in the plane with certain constraints.IEEE Trans. Cir. Theory, 1970, CT-17: 250–252.
Fisher G J, Wing O. Computer recognition and extraction of planar graphs from the incidence matrix.IEEE Trans. Cir. Theory, 1996 CT-23(2): 254–263.
Goldstein A J, Schweikert D G. A proper model for testing the planarity of electrical circuits.Bell Syst. Tech. J., 1973, 52: 135–142.
Hopcroft J. Ann logn algorithm for isomorphism of planar triply connected graphs. InTheory of Machines and Computation, Kohavi Zet al., (eds.), Acad. Press, 1971, pp.189–196.
Hopcroft J, Tarjan R. Planarity testing inV logV steps: Extended abstract. InProc. IFIP Cong., 1971, pp.85–90.
Hope A K. A planar graph drawing program.Solfware-Practice and Experience, 1971, 1: 82–91.
Hotz G. The embedding of graphs in the 2-sphere.Z. Angew. Math. Mech., 1965, 45.
Hotz G. Embedding of graphs in the plane.Math. Ann., 1966 167: 214–223.
Inukai T, Weinberg L. Planar, coplanar, and totally planarn-port networks.IEEE Trans. Cir. Syst., 1976, Case-23.
Jayakumar R, Thulasiraman K, Swamy M N S. Planar embeddings: Linear time algorithms for vertex placement and edge ordering.IEEE Trans. Cir. Syst., 1988 35 (3): 334–344.
Kirkpatrick D G. Optimal search in planar subdivision.SIAM J. Comput., 1983, 12: 28–35.
Knauer B. Normalformen planar graphen I.Computing, 1972, 10: 121–136.
Knauer B. Normalformen planar graphen II.Computing, 1972, 10: 137–152.
Knauer B. A simple planarity criterion.J. ACM, 1975, 22: 226–230.
Lefschetz S. Planar graphs and related topics. InProc. Nat. Acad. Sci. 1965, 54: 1763–1765.
Lempel A, Even S, Cederbaum I. An algorithm for planarity testing of graphs. In Graph Theory Rosenstiehl P (ed.), InProc. Int. Symp., Rome, 1967, p.215.
Lenganer T. Hierarchical planarity testing algorithms.J. ACM., 1989, 36: 474–509.
Plesnevic G S. Embedding a graph in the plane.Vycislitellnyes Sistemy, 1963, 6: 45–53.
Rosenstiehl P. Caracterisation des graphes planaires par une diagonale absreacte.Cong. Numer., 1976, 15: 521–527.
Rubin F. An algorithm for testing the planarity of a graph.IEEE Computer Group Respositery, R74-73, 1974.
Rubin F. An improved algorithm for testing the planarity of a graph.IEEE Trans. on Computers, 1975, C-24: 113–121.
Tutte W T. How to draw a graph. InProc. London Math. Soc., 1963, 13(Ser.3): 743–768.
Ulrich J W. A computational theory of planar embedding. InPh. D. Thesis, Univ. Texas, Austin, 1968.
Ulrich J W. A characterization of planar oriented graphs.SIAM J. Appl. Math., 1970, 18: 364–371.
Unger P. A theorem on planar graph, components, and subgraphs.J. London Math. Soc., 1951, 26: 256–262.
Weinberg L. Two new characterization of planar graphs. InProc. 5-th Allerton Conf. Cir. Syst., Uni. Ill., 1967.
Williamson S G. Embedding graphs in the plane-Algorithm aspects.Am. Discrete Math., 1980, 6: 349–384.
Wing O. On drawing a planar graph.IEEE Trans. Cir. Theory 1966, 13: 112–114.
Liu Y P, Marchioro P, Petreschi R. At most single-bend embeddings of cubic graphs. Research Report SI-92/01. Dept. Computer Science, Uni. «La Sapienza” of Rome, 1992. Also inApplied Math. (A J. Chinese Unis.), 1994, B9: 127–142.
Liu Y P, Marchioro P, Petreschi R, Simeone B. Theoretical results on at most 1-bend embeddability of graphs. Research Report Series A No.3, Department of Statistics, University of Rome “La Sapienza”, 1990; Also inActa Math. Appl. Sinica, Eng., 1992, Series 8: 188–192.
Liu Y P, Marchioro P, Petreschi R, Simeone B. On theoretical results of at most 1-embeddability of graphs.Chinese Science Bulletin, 1991, 36: 1054–1055.
Liu Y P, Morgana A. Simeone B. On the general theoretical results for rectilinear embeddability of graphs.KEXUE TONGBAO, (Chinese Ed.) 1990, 35: 1513–1514. Or seeChinese Science Bulletin (English Ed.), 1991, 36: 1490.
Liu Y P, Morgana A, Simeone B. General theoretical results on rectilinear embeddability of graphs, Research Report Series A, No. 2, Department of Statistics, University of Rome «La Sapienza», 1990; AlsoinActa Math. Appl. Sinica, Eng., 1991, Series 7: 187–192.
Liu Y P, Morgana A, Simeone B. A linear time algorithm for 3-bend embeddings of planar graphs in the grid. Research Report, Ser.A, No.1, Dept. Statistics, Uni. «La Sapienza», Rome, 1993. Also inDiscrete Appl. Math., 1998, 81: 69–92.
Liu Y P, Morgana A, Simeone B. A graph partition problem. Research Report, No.27, Inst. Appl. Math., Acad. Sinica, 1992. Also inActa Math. Appl. Sinica, Eng., 1996, Series 12: 393–400.
Liu Y P, Morgana A, Simeone B. Another linear time algorithm for finding 3-embeddings of a graph. Research Report, No.1, Inst. Appl. Math., Acad. Sinica, 1994.
Liu Y P, Morgana A, Simeone B. Characterizations of a kind of orientations of a graph. Research Report, No.2, Inst. Appl. Math., Acad. Sinica, 1994.
Liu Y P. On the net-embeddability of graphs.Acta Math. Sinica, 1994, New Series, 8: 413–423.
Liu Y P. On the efficient recognition on the net-extensibility of graphs.Chinese Science Bulletin, 1993, 38: 533–536.
Liu Y P. Combinatorial optimization arising from VLSI circuit design.Applied Math., (JCU), 1993, B8: 218–235.
Fraysseix H, Rosentiehl P. A depth — first search characterization of planarity.Ann. Discrete Math., 1982, 13: 75–80.
Fraysseix H, Rosenstiehl P. A characterization of planar graphs by Tremaux order.Combinatorica, 1985, 5: 127–155.
Liu Y P. Planarity testing nd planar embeddings of graphs.Acta Math. Appl. Sinica, 1979, 2: 350–365 (in Chinese).
Liu Y P. Boolean planarity characterization of graphs. RUTCOR Research Report RRR38-87, Rutgers University, 1987; Also inActa Math Sinica, 1988, New Series, 4: 316–329.
Liu Y P. Boolean approach to planar embeddings of a graph. RUTCOR Research Report RRR39-87, Rutgers University, 1987; Also inActa Math. Sinica, 1989, New Series, 5: 64–79.
Liu Y P. Boolean characterizations of planarity and planar embeddings of graphs.Ann. Operations Research, 1990, 24: 165–174.
Sun X R. On the complexity of testing the planarity by Wu(Wenjun)-Liu (Yanpei) Theorem, (in Chinese with English abstract). Chinese J. Comput., 1989, 12(1): 33–37.
Sun X R. Wu (Wenjun)-Liu (Yanpei) Theorem and planarity testing of graphs.Thesis, Inst. Applied Math., Acad. Sinica, 1987 (in Chinese).
Xu W X. An efficient algorithm for planarity testing based on Wu (Wenjun)-Liu (Yanpei)’s criterion. InProc. 1-st China-USA Conf. Graph Theory and its Applications, Ann. N. Y. Acad. Sci., 1989, 576: 641–652.
Hopcroft J E, Wong J K. Linear time algorithm for isomorphism of planar graphs (extended abstract). In6-th Ann. ACM Symp. Comput., Seattle, 1974.
Hopcroft J, Tarjan R. A V2 algorithm for determining isomorphism of planar graphs.Inform. Process. Lett. 1971, 1: 32–34.
Weinberg L. A simple and efficient algorithm for determining isomorphism of planar triply connected graphs.IEEE Trans. Circuit Theory, 1966, CT-13: 142–148.
Weinberg L. Plane representations and codes for planar graphs. InProc. 3-rd Ann. Allerton Conf. Cir. Syst., 1965, pp.733–744.
Weinberg L. Additional simple codes for planar graphs. InProc. 4-th Allerton Conf. Cir. Syst., 1966.
Basden A, Nichols K G. New topological method for layout printed circuits. InProc. IEEE, 1973, 120(3): 325–328.
Batini C, Talamo M, Tamassia R. Computer aided layout of entity-relationship diagrams.IEEE J. Syst. Software, 1994, 4: 163–173.
Behzao M. A criterion for the planarity of the total graph of a graph. InProc. Cambridge Phil. Soc., 1967, 63: 679–681.
Bhatt S N, Leighton F T. A framework for solving VLSI graph layout problems.J. Comput Syst. Scien., 1984, 28: 300–343.
Chen R W, Kajitani Y, Chan S P. A graph- theoretic via minimization algorithm for two — layer printed circuit boards.IEEE Trans. Cir. Syst., 1983, Case-30: 284–299.
Chua L O, Chen L K. On optimally sparse cycle and coboundary basis for a linear graph.IEEE Trans. Cir. Theory, 1973, CT-20: 495–503.
Charke E M, Feng Y. Escher-a geometrical layout system for recursively defined circuits.IEEE Trans. CAD, 1988, 7: 908–918.
van Cleemput W M. Mathematical models for the circuit layout problem.IEEE Trans. Cir. Syst., 1976, Case-23(12): 759–767.
van Cleemput W M, Linders J G. An improved graph theoretical model for the circuit layout problem. InProc. 11-th Design Automation Workshop, Denver, 1974.
Cohoon J P, Heck P L. BEAVER: a computational geometry based tool for switchbox routing.IEEE Trans. CAD, 1988, 7: 684–697.
Cong J, Wong D F, Liu C L. A new approach to three or four layer channel routing.IEEE Trans. CAD, 1988, 7: 1094–1104.
Du D Z, Liu Y P. Combinatorial Optimization. Handbook of OR Fundamentals. Hui Get al. (eds.), Science Press, Beijing, 1995, pp.125–167.
Hu T C, Kuh S E. Theory and concepts of circuit layout. InVLSI Circuit Layout: Theory and Design. IEEE Press, 1985, pp.3–18.
Lefschetz S. Applications of Algebraic Topology: Graphs and Networks, Springer, New York/Heidelberg/ Berlin, 1975.
Liu Y P. Rectilinear Embeddings: Theory and Methods. Beijing: Science Press, 1994 (in Chinese).
Rim C Set al. Exact algorithms for multilayer topological via minimization.IEEE Trans. CAD, 1989, 8: 1165–1173.
Rose N A, Oldfield J V. Printed — wiring — board layout by computer.Electronics and Power, Oct. 1971, pp.376–379.
Alekseev V B, Gonchakov V S. Thickness of arbitrary complete graphs.Math. Sbornik, 1976, 101: 212–230.
Beineke L, Harary F. On the thickness of the complete graph.Bull. Amer. Math. Soc., 1964, 70: 618–620.
Beineke L, Harary F. Inequalities involving the genus of a graph and its thickness. InProc. Glasgow Math. Assoc., 1965, 7: 19–21.
Beineke L, Harary F. The thickness of the complete graph.Canad. J. Math., 1965, 17: 850–859.
Beineke L, Harary F, Moon J W. On the thickness of the complete bipartite graph. InProc. Camb. Phil. Soc., 1964, 60: 1–4.
Bose N K, Prabhu K A. Thickness of graphs with degree constrained vertices.IEEE Trans. Cir. Syst., 1977, Case-24(4): 184–190.
Chung F R K, Leighton F T, Rosenberg A L. Embedding graphs in books: A graph layout problem with applications to VLSI design.SIAM J. Algeb Discrete Methods, 1987, 8: 33–48.
Hobbs A M. A survey of thickness. InRecent progress in Combinatorics, Tutte W T (ed.), 1969, pp.255–264.
Hobbs A M, Grossman G W. A class of thickness-minimal graphs.J. Res. Nat. Bur. Standards, 1968, 72B: 145–153.
Hobbs A M, Grossman G W. Thickness and connectivity in graphs.J. Res. Nat. Bur. Standards, 1968, 72B: 239–244.
Jayakumar Ret al O(n 2) algorithms for graph planarization.IEEE Trans. CAD, 1989, 8: 257–267.
Kleinert M. The thickness of then-dimensional cube.J. Comb, Theory, 1967, 3: 10–15.
Lerda F, Majoranic E. An algorithm for connectingn points with a minimum number of crossings.Calcolo, 1964, 1: 257–365.
Levow R B. On Tutte’s algebraic approach to the theory of crossing numbers. InProc. 3-rd S-E Conf. Comb. Graph Theory Comput., 1972, pp.315–324.
Lin P M. On Methods of deleting planar graphs. InProc. 8-th Midwest Symp. Cir. Theory, Colorado State Univ., Boulder, 1965, pp.11–19
Liu T Y, Liu Y P. On the crossing number of circular graphs.OR Transactions, 1998, 2(4): 32–38.
Liu Y P. Boolean approaches to graph embeddings related to VLSI.Discrete Applied Math., accepted and to appear.
Liu Y P. Planarity theory and routing automation. Plenary Report, Symposium on Mathematical Mechanization, Beijing, 1999 (in Chinese).
Melikhov A N, Kuleychik V M, Lisyak V V. Partition of a graph into plane subgraphs (in Rassian).Cybernetics, 1972, 10: 1087–1090.
Richter B. Cubic graphs with crossing number two.J. Graph Theory, 1988, 12(3): 363–374.
Rubin F. A note on Lerda and Majoronic’s minimum corssing algorithm.Calcolo, 1974, 11: 201–203.
Yannakakis M. Embedding planar graphs in four pages.J. Comput. Syst. Sci., 1989, 38: 36–67.
Auslander L, Brown T, Youngs J W T. The embedding of graphs in manifolds.J. Math. Mech., 1963, 12(4): 229–234.
Liu Y P. Transportation networks: Old and new.Applied Math., (JCU), 1996, B11: 251–272.
Liu Y P. Transportation Networks: Theory and Methods. Shanghai Jiaotong University Press, Shanghai, 1998 (in Chinese).
Kaufmann M. A linear time algorithm for routing in a convex grid.IEEE Trans. CAD, 1990, 9: 180–184.
Lawrencenko S, Liu X, Liu Y P. An algorithm for constructing a rectilinear embedding of a given graph in the plane (with Lawrencenko S, Liu X).Comb. Graph Theory’95, World Scien. Pub., 1995, pp.205–217.
Storer J A. The node cost measure for embedding graphs in the planar grid. InProc. 12-th ACM Symp. Comput., 1980, pp.201–210.
Liu Y P Enumerative Theory of Maps. Kluwer, Dordrecht/Boston/London, 1999.
Author information
Authors and Affiliations
Corresponding author
Additional information
LIU Yanpei is a Professor of Northern Jiaotong University. His research work are mainly on the theory of enumerating maps on surfaces and combinatorial optimization related to graphs, networks and Boolean functions especially appearing in VLSI circuit designs and CAD.