Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Analyzing and mining ordered information tables

  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Work in inductive learning has mostly been concentrated on classifying. However, there are many applications in which it is desirable to order rather than to classify instances. For modelling ordering problems, we generalize the notion of information tables to ordered information tables by adding order relations in attribute values. Then we propose a data analysis model by analyzing the dependency of attributes to describe the properties of ordered information tables. The problem of mining ordering rules is formulated as finding association between orderings of attribute values and the overall ordering of objects. An ordering rules may state that “if the value of an objectx on an attribute a is ordered ahead of the value of another objecty on the same attribute, thenx is ordered ahead ofy”. For mining ordering rules, we first transform an ordered information table into a binary information table, and then apply any standard machine learning and data mining algorithms. As an illustration, we analyze in detail Maclean’s universities ranking for the year 2000.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Cohen W W, Schapire R E, Singer Y. Learning to order things.Advances in Neural Information Processing Systems, 1998, 10.

  2. Pawlak Z, Slowinski R. Rough set approach to multiattribute decision analysis.European Journal of Operational Research, 1994, 72: 443–459.

    Article  MATH  Google Scholar 

  3. Yao Y Y. Information tables with neighborhood semantics. InData Mining and Knowledge Discovery: Theory, Tools, and Technology II, Dasarathy B V (ed.), Society for Optical Engineering, Bellingham, Washington, 2000, pp. 108–116.

  4. Yao Y Y, Sai Y. Mining ordering rules using rough set theory.Bulletin of International Rough Set Society, 2001, 5: 99–106.

    Google Scholar 

  5. Yao Y Y, Sai Y. On mining ordering rules.New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, 2253 (LNCS2253), Terano T, Nishida Tet al. (eds.), Springer, 2001, pp.316–321.

  6. Sai Y, Yao Y Y. Data analysis and mining in ordered information tables. InProc. the 2001 IEEE International Conference on Data Mining. ICDM ’01, San Jose, California, USA, Nov. 29–Dec. 2, 2001, pp.497–504.

  7. Pawlak Z. Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht, 1991.

    MATH  Google Scholar 

  8. Tsumoto S. Modelling medical diagnostic rules based on rough sets.Rough Sets and Current Trends in Computing, Lecture Notes in Artificial Intelligence, 1424, Springer-Verlag, Berlin, 1998, pp.475–482.

    Google Scholar 

  9. Yao Y Y, Zhong N. An analysis of quantitative measures associated with rules. InProc. PAKDD’99, 1999, pp.479–488.

  10. Yao Y Y. Generalized rough set models, InRough Sets in Knowledge Discovery, Polkowski L, Skowron A (eds.), Physica-Verlag, Heidelberg, 1998, pp.286–318.

    Google Scholar 

  11. Yao Y Y, Lin T Y. Generalization of rough sets using modal logic.Intelligent Automation and Soft Computing, An International Journal, 1996, 2: 103–120.

    Google Scholar 

  12. Orlowska E. Reasoning about vague concepts.Bulletin of Polish Academy of Science, Mathematics, 1987, 35: 643–652.

    MATH  MathSciNet  Google Scholar 

  13. Rosetta. A rough set toolkit for analyzing data. http://www.idi.ntnu.no/aleks/rosetta/.

  14. Quinlan J R. C4.5: Program for Machine Learning. Morgan Kaufmann Publishers, San Marteo, 1993.

    Google Scholar 

  15. Macleans. Maclean’s Universities 2000. November 20, 2000.

  16. Iwinski T B. Ordinal information system, I.Bulletin of the Polish Academy of Sciences, Mathematics, 1988, 36: 467–475.

    MATH  MathSciNet  Google Scholar 

  17. Greco S, Matarazzo B, Slowinski R. The use of rough sets and fuzzy sets in MCDM. InAdvances in Multiple Criteria Decision Making, Gal T, Hanne T, Stewart T (eds.), Kluwer Academic Publishers, Boston, 1999, pp.14.1–14.59.

    Google Scholar 

  18. Greco S, Matarazzo B, Slowinski R. Rough approximation of a preference relation by dominance relations.European Journal of Operational Research, 1999, 117: 63–83.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Ying.

Additional information

SAI Ying received the B.A. degree in computer science and the M.S. degree in computer software from Shandong University, and received the Ph.D. degree from the National University of Defense Technology, P.R. China. She worked as a visiting scholar for one year in the University of Regina, Canada. She is an associate professor of computer science at Shandong Finance Institute. Her research interests are intelligent information systems, machine learning, data mining and rough set theory. She is a member of the Machine Learning Society of China.

Y. Y. Yao is a professor of computer science in the University of Regina, Canada. His main interests are information retrieval and uncertainty management in intelligent information systems, including uncertain reasoning, fuzzy sets, rough sets, granular computing, etc. He is a member of ACM and SIGIR, IEEE and IEEE Computer Society, Advisory Board of the International Rough Set Society, and a coordinator and member of Advisory Board of GrC: A Special Interest Group on Granular Computing in BISC. He is a managing editor of Bulletin of International Rough Set Society, an associate editor of Journal of Computing and Information and an editorial board member of International Journal of Knowledge and Information Systems.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sai, Y., Yao, Y.Y. Analyzing and mining ordered information tables. J. Comput. Sci. & Technol. 18, 771–779 (2003). https://doi.org/10.1007/BF02945466

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02945466

Keywords

Navigation