Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Stochastic approaches to uncertainty quantification in CFD simulations

  • Section II: Spectral Methods
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper discusses two stochastic approaches to computing the propagation of uncertainty in numerical simulations: polynomial chaos and stochastic collocation. Chebyshev polynomials are used in both cases for the conventional, deterministic portion of the discretization in physical space. For the stochastic parameters, polynomial chaos utilizes a Galerkin approximation based upon expansions in Hermite polynomials, whereas stochastic collocation rests upon a novel transformation between the stochastic space and an artificial space. In our present implementation of stochastic collocation, Legendre interpolating polynomials are employed. These methods are discussed in the specific context of a quasi-one-dimensional nozzle flow with uncertainty in inlet conditions and nozzle shape. It is shown that both stochastic approaches efficiently handle uncertainty propagation. Furthermore, these approaches enable computation of statistical moments of arbitrary order in a much more effective way than other usual techniques such as the Monte Carlo simulation or perturbation methods. The numerical results indicate that the stochastic collocation method is substantially more efficient than the full Galerkin, polynomial chaos method. Moreover, the stochastic collocation method extends readily to highly nonlinear equations. An important application is to the stochastic Riemann problem, which is of particular interest for spectral discontinuous Galerkin methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anon., AIAA guide for the verification and validation of computational fluid dynamics simulations, AIAA G-077-1998 (1998).

  2. B. Cockburn, G.E. Karniadakis and C.-W. Shu, eds.,Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering, Vol. 11 (Springer, New York, 2000).

    MATH  Google Scholar 

  3. H.W. Coleman and F. Stern, Uncertainties and CFD code validation, J Fluids Engrg. 119 (1997) 795–803.

    Article  Google Scholar 

  4. B.J. Debusschere, H.N. Najm, A. Matta, O.M. Knio, R.G. Ghanem and O.P. Le Maître, Protein labeling reactions in electrochemical microchannel flow: Numerical simulation and uncertainty propagation, Phys. Fluids 15(8) (2003) 2238–2250.

    Article  Google Scholar 

  5. R.G. Ghanem and P.D. Spanos,Stochastic Finite Elements: A Spectral Approach (Springer, New York, 1991).

    MATH  Google Scholar 

  6. M.J. Hemsch, Statistical analysis of CFD solutions from the drag prediction workshop, AIAA-2002-0842 (2002).

  7. L. Huyse, Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies, ICASE Report No. 2001-18 (2001).

  8. L.D. Landau and E.M. Lifshitz,Course of Theoretical Physics, Vol. 6.Fluid Mechanics (Pergamon, Oxford, 1982).

    Google Scholar 

  9. O.P. Le Maître, O.M. Knio, H.N. Najm and R.G. Ghanem, A stochastic projection for fluid flow. I—Basic formulation, J. Comput. Phys 173 (2001) 481–511.

    Article  MATH  MathSciNet  Google Scholar 

  10. O.P. Le Maître, M.T. Reagan, H.N. Najm, R.G. Ghanem and O.M. Knio, A stochastic projection for fluid flow. II—Random process, J. Comput. Phys. 181 (2002) 9–44.

    Article  MATH  MathSciNet  Google Scholar 

  11. H.W. Liepmann and A. Roshko,Elements of Gas Dynamics (Wiley, New York, 1957).

    Google Scholar 

  12. J.M. Luckring, M.J. Hemsch and J.H. Morrison, Uncertainty in computational aerodynamics, AIAA-2003-0409 (2003).

  13. L. Mathelin and M.Y. Hussaini, A stochastic collocation algorithm, for uncertainty analysis, NASA/CR-2003-212153 (2003).

  14. U.B. Mehta, Some aspects of uncertainty in computational fluid dynamics results, J. Fluids Engrg. 113 (1991) 538–543.

    Article  Google Scholar 

  15. W.L. Oberkampf and F.G. Blottner, Issues in computational fluid dynamics code verification and validation, AIAA J. 36 (1998) 687–695.

    Article  Google Scholar 

  16. W.L. Oberkampf, K.V. Diegert, K.F. Alvin and B.M. Rutherford, Variability, uncertainty, and error in computational simulation, in:AIAA/ASME Joint Thermophysics and Heat Transfer Conference, ASME-HTD, Vol. 357-2 (1998) pp. 259–272.

  17. W.L. Oberkampf and T.G. Trucano, Verification and validation in computational fluid dynamics, Progress Aerospace Sci. 38(3) (2002) 209–272.

    Article  Google Scholar 

  18. A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 54 (1984) 468–488.

    Article  MATH  Google Scholar 

  19. P.J. Roache,Verification and Validation in Computational Science and Engineering, (Hermosa Publishers, Albuquerque, 1998).

    Google Scholar 

  20. G.A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1978) 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  21. A.C. Taylor, L.L. Green, P.A. Newman and M.M. Putko, Some advanced concepts in discrete aerodynamic sensitivity analysis, AIAA J. 41(7) (2003) 1224–1229.

    Article  Google Scholar 

  22. R.W. Walters and L. Huyse, Uncertainty analysis for fluid mechanics with applications, ICASE Report No. 2002-1 NASA/CR-2002-211449 (2002).

  23. N. Wiener, The homogeneous chaos, Amer. J. Math. 60 (1938) 897–936.

    Article  MathSciNet  Google Scholar 

  24. D. Xiu, D. Lucor, C.-H. Su and G.E. Karniadakis, Stochastic modeling of flow-structure interactions using generalized polynomial chaos, J. Fluids Engrg. 124(1) (2002) 51–59.

    Article  Google Scholar 

  25. D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput. 24(2) (2002) 619–644.

    Article  MATH  MathSciNet  Google Scholar 

  26. D. Xiu and G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys. 187 (2003) 137–167.

    Article  MATH  MathSciNet  Google Scholar 

  27. T.A. Zang, M.J. Hemsch, M.W. Hilburger, S.P. Kenny, J.M. Luckring, P.M. Maghami, S.L. Padula and W.J. Stroud, Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles, NASA/TM-2002-211462 (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Mathelin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathelin, L., Hussaini, M.Y. & Zang, T.A. Stochastic approaches to uncertainty quantification in CFD simulations. Numer Algor 38, 209–236 (2005). https://doi.org/10.1007/BF02810624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02810624

Keywords

AMS subject classification

Navigation