Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates

  • Solidification
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Electromagnetic levitation and electron beam surface melting were employed to study the effects of supercooling and cooling rate on the solidification of Cu-10 wt pct Co alloys. Two major effects were observed in the supercooled alloys: the nucleation of a metastable copper-rich phase which contains 13 wt pct to 20 wt pct Co in samples supercooled between 105 and 150 K and liquid phase separation which occurs in samples supercooled 150 K or more. The microstructure of the electron beam melted surfaces consisted of very fine spheres which were similar to those of the sample supercooled more than 150 K but with a refined microstructure. The results indicate that a dynamic bulk supercooling of 150 K may exist in the molten pool during the solidification of electron beam melted surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Kurtz and R. Trivedi:Acta Metall. Mater., 1990, vol. 38, p. 1.

    Article  Google Scholar 

  2. G.J. Abbaschian and M.C. Flemings:Metall. Trans. A, 1983, vol. 14A, pp. 1147–57.

    Google Scholar 

  3. T.Z. Kattamis and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, p. 1523.

    CAS  Google Scholar 

  4. T.Z. Kattamis and M.C. Flemings:Trans. Am. Foundrymen’s Soc., 1967, vol. 75, p. 191.

    Google Scholar 

  5. T.F. Kelly and J.B. Vander Sande: inChemistry and Physics of Rapidly Solidified Materials, B.J. Berkowitz and R.O. Scattergood, eds., TMS-AIME, Warrendale, PA, 1982, p. 35.

    Google Scholar 

  6. R.T. Southin and G.M. Weston:J. Australian Inst. Met., 1974, vol. 19, p. 93.

    CAS  Google Scholar 

  7. L.M. Hogan: inPhysics of Materials, D.W. Borland, L.M. Clarebrough, and A.J.M. Moore, eds., University of Melbourne, Australia, 1979, p. 111.

    Google Scholar 

  8. L.F. Mondelfo: inGrain Refinement in Casting and Welds, G.J. Abbaschian and S.A. David, eds., TMS-AIME, Warrendale, PA, 1982, p. 3.

    Google Scholar 

  9. A. Munitz and G.J. Abbaschian: inUndercooled Alloy Phases, C.C. Koch and E.W. Collings, eds., TMS-AIME, Warrendale, PA, 1987, p. 23.

    Google Scholar 

  10. D.D. McDevitt and G.J. Abbaschian: inChemistry and Physics of Rapidly Solidified Materials, B.J. Berkowitz and R.O. Scattergood, eds., TMS-AIME, Warrendale, PA, 1982, p. 49.

    Google Scholar 

  11. W.J. Boettinger, S.R. Coriel, and R.F. Sekerka: inChemistry and Physics of Rapidly Solidified Materials, B.J. Berkowitz and R.O. Scattergood, eds., TMS-AIME, Warrendale, PA, 1982, p. 45.

    Google Scholar 

  12. M. Cohen and M.C. Flemings: inRapidly Solidified Crystalline Alloys, S.K. Das, B.H. Kear, and C.M. Adam, eds., TMS-AIME, Warrendale, PA, 1985, p. 3.

    Google Scholar 

  13. J.H. Perepezko, Y. Shiahara, J.S. Paik, and M.C. Flemings: inRapid Solidification Processing: Principles and Technologies III, R. Mehrabian, ed., NBS, Gaithersburg, MD, 1982, p. 28.

    Google Scholar 

  14. J.L. Walker: inPhysical Chemistry of Process Metallurgy, G.R.St. Pierre, ed., Interscience Publications, New York, NY, 1961, p. 845.

    Google Scholar 

  15. S.P. Elder, A. Munitz, and G.J. Abbaschian:Mater. Sci. Forum, 1989, vol. 50, p. 137.

    Article  Google Scholar 

  16. T. Nishizawa and K. Ishida:Bull. Alloy Phase Diag., 1984, vol. 5, p. 161.

    CAS  Google Scholar 

  17. Y. Nakagawa:Acta Metall., 1958, vol. 6, p. 704.

    Article  CAS  Google Scholar 

  18. H. Jones:Treatise on Materials Science and Technology, H. Herman, ed., Academic Press, New York, NY, 1981, vol. 20, p. 1.

    Google Scholar 

  19. A. Munitz:Metall. Trans. B, 1987, vol. 18B, pp. 565–75.

    Article  CAS  Google Scholar 

  20. S.J.B. Reed:Electron Microprobe Analysis, Cambridge University Press, Cambridge, U.K., 1977, pp. 175–97.

    Google Scholar 

  21. A. Munitz and R. Abbaschian: University of Florida, unpublished research, 1992.

  22. T.W. Clyne:Metall. Trans. B, 1984, vol. 15B, pp. 369–81.

    Article  CAS  Google Scholar 

  23. S.P. Elder and G.J. Abbaschian:Principles of Solidification and Materials Processing, R. Trivedi, J.A. Sekhar, and J. Mazumdar, eds., Oxford Press, New Delhi, 1989, p. 299.

    Google Scholar 

  24. Z. Livne and A. Munitz:J. Mater. Sci., 1987, vol. 22, p. 495.

    Article  Google Scholar 

  25. I.S. Miroshnichenko and G.P. Brekharya:Fiz. Metal. Metalloved., 1970, vol. 20, p. 664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munitz, A., Elder-Randall, S.P. & Abbaschian, R. Supercooling effects in Cu-10 Wt Pct Co alloys solidified at different cooling rates. Metall Trans A 23, 1817–1827 (1992). https://doi.org/10.1007/BF02804374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804374

Keywords

Navigation