Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Two applications of the divide&conquer principle in the molecular sciences

  • Published:
Mathematical Programming Submit manuscript

Abstract

In this paper, two problems from the molecular sciences are addressed: the enumeration of fullerene-type isomers and the alignment of biosequences. We report on two algorithms dealing with these problems both of which are based on the well-known and widely used Divide&Conquer principle. In other words, our algorithms attack the original problems by associating with them an appropriate number of much simpler problems whose solutions can be “glued together” to yield solutions of the original, rather complex tasks. The considerable improvements achieved this way exemplify that the present day molecular sciences offer many worthwhile opportunities for the effective use of fundamental algorithmic principles and architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.F. Altschul, Gap costs for multiple sequence alignment,J. Theor. Biol. 138 (1989) 297–309.

    Article  MathSciNet  Google Scholar 

  2. S.F. Altschul, R.J. Carroll and D.J. Lipman, Weights for data related by a tree,J. Mol. Biol. 207 (1989) 647–653.

    Article  Google Scholar 

  3. S.J. Austin, P.W. Fowler, P. Hansen, D.E. Manolopoulos and M. Zheng, Fullerene isomers of C60, Kekule counts versus stability,Chem. Phys. Letters 228 (1994) 478–484.

    Article  Google Scholar 

  4. D. Babić, G. Brinkmann and A. Dress, Topological resonance energy of fullerenes (1997) in preparation.

  5. G. Brinkmann, The combinatorial enumeration of tube-type Fullerenes and Fullerene caps, (1997) in preparation.

  6. G. Brinkmann and A.W.M. Dress, A constructive enumeration of fullerenes,Journal of Algorithms (1997) to appear.

  7. H. Carrillo and D.J. Lipman, The multiple sequence alignment problem in biology,SIAM J. Appl. Math. 48 (5) (1988) 1073–1082.

    Article  MATH  MathSciNet  Google Scholar 

  8. S.C. Chan, A.K.C. Wong and D.K.Y. Chiu, A survey of multiple sequence comparison methods,Bull. Math. Biol. 54 (4) (1992) 563–598.

    MATH  Google Scholar 

  9. H.S.M. Coxeter,Regular Polytopes (Dover, New York, 1973).

    Google Scholar 

  10. M.O. Dayhoff, R.M. Schwartz and B.C. Orcutt, A model of evolutionary change in proteins, in: M.O. Dayhoff, ed.,Atlas of Protein Sequences and Structure, Vol. 5, Suppl. 3 (National Biomedical Research Foundation, Washington, DC, 1979) 345–352.

    Google Scholar 

  11. R.F. Doolittle, Computer methods for macromolecular sequence analysis,Methods in Enzymology 266 (Academic Press, San Diego, USA, 1996).

    Google Scholar 

  12. A.W.M. Dress and M. Krüger, Parsimonious phylogenetic trees in metric spaces and simulated annealing,Adv. in Appl. Math. 8 (1987) 8–37.

    Article  MATH  MathSciNet  Google Scholar 

  13. A.W.M. Dress, On the computational complexity of composite systems,Proceedings of the Ninth Sitges Conference in Theoretical Physics, Sitges, 1986 Springer Lecture Notes, Vol. 268 (Springer, Berlin, 1987) 377–388.

    Google Scholar 

  14. A.W.M. Dress, Computing spin-glass Hamiltonians, Manuscript, Bielefeld, 1986.

  15. A.W.M. Dress, G. Füllen and S.W. Perrey, A divide and conquer approach to multiple aLignment, in:Proceedings of the Third Conference on Intelligent Systems for Molecular Biology, ISMB 95 (AAAI Press, Menlo Park, CA, USA, 1995) 107–113.

    Google Scholar 

  16. D.-F. Feng and R.F. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees,J. Mol. Evol. 21 (1987) 112–125.

    Article  Google Scholar 

  17. O. Gotoh, An improved algorithm for matching sequences,J. Mol. Biol. 162 (1981) 705–708.

    Article  Google Scholar 

  18. S.K. Gupta, J.D. Kececioglu and A.A. Schäffer, Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment,J. Comp. Biol. 2 (3) (1995) 459–472.

    Article  Google Scholar 

  19. T. Harmuth, Die Generierung simpler, 3-regulärer planarer, zusammenhängender Graphen mit vorgegebenen Flächengrößen, Diplomarbeit, Universität Bielefeld, 1997.

  20. R.E. Hickson, C. Simon and S.W. Perrey, An evaluation of multiple sequence alignment programs using an rRNA data set, (1997) submitted.

  21. D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences,Communications of the ACM 18 (6) (1975) 341–343.

    Article  MATH  MathSciNet  Google Scholar 

  22. D.J. Klein and X. Liu, Elemental carbon isomerism, in:International Journal of Quantum Chemistry, Quantum Chemistry Symposium 28 (John Wiley & Sons, New York, 1994) 501–523.

    Google Scholar 

  23. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, C60: Buckminsterfullerene,Nature 318 (1985) 162–163.

    Article  Google Scholar 

  24. D.J. Lipman, S.F. Altschul and J.D. Kececioglu, A tool for multiple sequence alignment,Proc. Nat. Acad. Sci. USA 86 (1989) 4412–4415.

    Article  Google Scholar 

  25. X. Liu, D.J. Klein, T.G. Schmalz and W.A. Seitz, Sixty-atom carbon cages,Journal of Computational Chemistry 12 (10) (1991) 1265–1269.

    Article  MathSciNet  Google Scholar 

  26. J. Malkevitch, Polytopal graphs, in: L.W. Beineke and R.J. Wilson, eds.,Selected Topics in Graph Theory, Vol. 3 (1988) 169–188.

    MathSciNet  Google Scholar 

  27. H.M. Martinez, A flexible multiple sequence alignment program,Nucl. Acids Res. 16 (1988) 1683–1691.

    Article  Google Scholar 

  28. D.E. Manolopoulos and P.W. Fowler,An Atlas of Fullerenes (Oxford University Press, Oxford, 1995).

    Google Scholar 

  29. D.E. Manolopoulos, J.C. May and S.E. Down, Theoretical studies of the fullerenes: C34 to C70,Chemical Physics Letters 181 (2–3) (1991) 105–111.

    Article  Google Scholar 

  30. M.A. McClure, T.K. Vasi and W.M. Fitch, Comparative analysis of multiple protein-sequence alignment methods,J. Mol. Biol. Evol. 11 (4) (1994) 571–592.

    Google Scholar 

  31. E.W. Myers and W. Miller, Optimal alignments in linear space,SABIOS 4 (1) (1988) 11–17.

    Google Scholar 

  32. E.W. Myers, An overview of sequence comparison algorithms in molecular biology, Technical Report TR 91-29, Department of Computer Science, University of Arizona, Tucson, 1991.

    Google Scholar 

  33. S.B. Needleman and C.D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins,J. Mol. Biol. 48 (1970) 443–453.

    Article  Google Scholar 

  34. S.W. Perrey, M.D. Hendy and R.E. Hickson, Evaluating the bias of multiple sequence alignment methods for phylogenetic tree reconstruction, Manuscript, Chrischurch, 1997.

  35. S.W. Perrey and J. Stoye, Fast approximation to the np-hard problem of multiple sequence alignment,Information and Mathematical Sciences Reports, Series B:96/06 (ISSN 1171–7637), May 1996.

  36. S.W. Perrey, J. Stoye, V. Moulton and A.W.M. Dress, On simultaneous versus iterative multiple sequence alignment, (1997) submitted.

  37. M.J. Plunkett and J.A. Ellman, Combinatorial chemistry and new drugs,Scientific American 276 (4) (1997) 54–59.

    Article  Google Scholar 

  38. Chih-Han Sah, Combinatorial construction of fullerene structures,Croatica Chemica Acta (1993) 1–12.

  39. D. Sankoff and J.B. Kruskal, eds.,Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison (Addison Wesley, Reading, MA, 1983).

    Google Scholar 

  40. T.G. Schmalz, W.A. Seitz, D.J. Klein and G.E. Hite, Elemental carbon cages,J. Amer. Chem. Soc. 110 (1988) 1113–1127.

    Article  Google Scholar 

  41. J. Stoye, Divide and conquer multiple sequence alignment, http://bibiserv.techfak.uni-bielefeld.de/dca/, 1996.

  42. J. Stoye, S.W. Perrey and A.W.M. Dress, Improving the divide-and-conquer approach to sum-of-pairs multiple sequence alignment,Appl. Math. Lett. (1997) to appear.

  43. J. Stoye, Divide-and-conquer multiple sequence alignment, Dissertation, Technische Fakultät der Universität Bielefeld, 1997.

  44. W.R. Taylor, Identification of protein sequence homology by consensus template alignment,J. Mol. Biol. 188, pp. 233–258.

  45. J.D. Thompson, D.G. Higgins and T.J. Gibson, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,Nucl. Acids Res. 22 (1994) 4673–4680.

    Article  Google Scholar 

  46. U. Tönges, S.W. Perrey, J. Stoye and A.W.M. Dress, A general method for fast multiple sequence alignment,Gene 172 (1996) GC33-GC41.

    Article  Google Scholar 

  47. M. Vingron and P. Argos, Motif recognition and alignment for many sequences by comparison of dotmatrices,J. Mol. Biol. 218 (1991) 33–43.

    Article  Google Scholar 

  48. R.A. Wagner and M.J. Fischer, The string-to-string correction problem,Journal of the ACM 21 (1) (1974) 168–173.

    Article  MATH  MathSciNet  Google Scholar 

  49. M.S. Waterman,Introduction to Computational Biology. Maps Sequences and Genomes (Chapman & Hall, London, UK, 1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkmann, G., Dress, A.W.M., Perrey, S.W. et al. Two applications of the divide&conquer principle in the molecular sciences. Mathematical Programming 79, 71–97 (1997). https://doi.org/10.1007/BF02614312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614312

Keywords

Navigation