Abstract
In this paper, two problems from the molecular sciences are addressed: the enumeration of fullerene-type isomers and the alignment of biosequences. We report on two algorithms dealing with these problems both of which are based on the well-known and widely used Divide&Conquer principle. In other words, our algorithms attack the original problems by associating with them an appropriate number of much simpler problems whose solutions can be “glued together” to yield solutions of the original, rather complex tasks. The considerable improvements achieved this way exemplify that the present day molecular sciences offer many worthwhile opportunities for the effective use of fundamental algorithmic principles and architectures.
Similar content being viewed by others
References
S.F. Altschul, Gap costs for multiple sequence alignment,J. Theor. Biol. 138 (1989) 297–309.
S.F. Altschul, R.J. Carroll and D.J. Lipman, Weights for data related by a tree,J. Mol. Biol. 207 (1989) 647–653.
S.J. Austin, P.W. Fowler, P. Hansen, D.E. Manolopoulos and M. Zheng, Fullerene isomers of C60, Kekule counts versus stability,Chem. Phys. Letters 228 (1994) 478–484.
D. Babić, G. Brinkmann and A. Dress, Topological resonance energy of fullerenes (1997) in preparation.
G. Brinkmann, The combinatorial enumeration of tube-type Fullerenes and Fullerene caps, (1997) in preparation.
G. Brinkmann and A.W.M. Dress, A constructive enumeration of fullerenes,Journal of Algorithms (1997) to appear.
H. Carrillo and D.J. Lipman, The multiple sequence alignment problem in biology,SIAM J. Appl. Math. 48 (5) (1988) 1073–1082.
S.C. Chan, A.K.C. Wong and D.K.Y. Chiu, A survey of multiple sequence comparison methods,Bull. Math. Biol. 54 (4) (1992) 563–598.
H.S.M. Coxeter,Regular Polytopes (Dover, New York, 1973).
M.O. Dayhoff, R.M. Schwartz and B.C. Orcutt, A model of evolutionary change in proteins, in: M.O. Dayhoff, ed.,Atlas of Protein Sequences and Structure, Vol. 5, Suppl. 3 (National Biomedical Research Foundation, Washington, DC, 1979) 345–352.
R.F. Doolittle, Computer methods for macromolecular sequence analysis,Methods in Enzymology 266 (Academic Press, San Diego, USA, 1996).
A.W.M. Dress and M. Krüger, Parsimonious phylogenetic trees in metric spaces and simulated annealing,Adv. in Appl. Math. 8 (1987) 8–37.
A.W.M. Dress, On the computational complexity of composite systems,Proceedings of the Ninth Sitges Conference in Theoretical Physics, Sitges, 1986 Springer Lecture Notes, Vol. 268 (Springer, Berlin, 1987) 377–388.
A.W.M. Dress, Computing spin-glass Hamiltonians, Manuscript, Bielefeld, 1986.
A.W.M. Dress, G. Füllen and S.W. Perrey, A divide and conquer approach to multiple aLignment, in:Proceedings of the Third Conference on Intelligent Systems for Molecular Biology, ISMB 95 (AAAI Press, Menlo Park, CA, USA, 1995) 107–113.
D.-F. Feng and R.F. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees,J. Mol. Evol. 21 (1987) 112–125.
O. Gotoh, An improved algorithm for matching sequences,J. Mol. Biol. 162 (1981) 705–708.
S.K. Gupta, J.D. Kececioglu and A.A. Schäffer, Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment,J. Comp. Biol. 2 (3) (1995) 459–472.
T. Harmuth, Die Generierung simpler, 3-regulärer planarer, zusammenhängender Graphen mit vorgegebenen Flächengrößen, Diplomarbeit, Universität Bielefeld, 1997.
R.E. Hickson, C. Simon and S.W. Perrey, An evaluation of multiple sequence alignment programs using an rRNA data set, (1997) submitted.
D.S. Hirschberg, A linear space algorithm for computing maximal common subsequences,Communications of the ACM 18 (6) (1975) 341–343.
D.J. Klein and X. Liu, Elemental carbon isomerism, in:International Journal of Quantum Chemistry, Quantum Chemistry Symposium 28 (John Wiley & Sons, New York, 1994) 501–523.
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, C60: Buckminsterfullerene,Nature 318 (1985) 162–163.
D.J. Lipman, S.F. Altschul and J.D. Kececioglu, A tool for multiple sequence alignment,Proc. Nat. Acad. Sci. USA 86 (1989) 4412–4415.
X. Liu, D.J. Klein, T.G. Schmalz and W.A. Seitz, Sixty-atom carbon cages,Journal of Computational Chemistry 12 (10) (1991) 1265–1269.
J. Malkevitch, Polytopal graphs, in: L.W. Beineke and R.J. Wilson, eds.,Selected Topics in Graph Theory, Vol. 3 (1988) 169–188.
H.M. Martinez, A flexible multiple sequence alignment program,Nucl. Acids Res. 16 (1988) 1683–1691.
D.E. Manolopoulos and P.W. Fowler,An Atlas of Fullerenes (Oxford University Press, Oxford, 1995).
D.E. Manolopoulos, J.C. May and S.E. Down, Theoretical studies of the fullerenes: C34 to C70,Chemical Physics Letters 181 (2–3) (1991) 105–111.
M.A. McClure, T.K. Vasi and W.M. Fitch, Comparative analysis of multiple protein-sequence alignment methods,J. Mol. Biol. Evol. 11 (4) (1994) 571–592.
E.W. Myers and W. Miller, Optimal alignments in linear space,SABIOS 4 (1) (1988) 11–17.
E.W. Myers, An overview of sequence comparison algorithms in molecular biology, Technical Report TR 91-29, Department of Computer Science, University of Arizona, Tucson, 1991.
S.B. Needleman and C.D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins,J. Mol. Biol. 48 (1970) 443–453.
S.W. Perrey, M.D. Hendy and R.E. Hickson, Evaluating the bias of multiple sequence alignment methods for phylogenetic tree reconstruction, Manuscript, Chrischurch, 1997.
S.W. Perrey and J. Stoye, Fast approximation to the np-hard problem of multiple sequence alignment,Information and Mathematical Sciences Reports, Series B:96/06 (ISSN 1171–7637), May 1996.
S.W. Perrey, J. Stoye, V. Moulton and A.W.M. Dress, On simultaneous versus iterative multiple sequence alignment, (1997) submitted.
M.J. Plunkett and J.A. Ellman, Combinatorial chemistry and new drugs,Scientific American 276 (4) (1997) 54–59.
Chih-Han Sah, Combinatorial construction of fullerene structures,Croatica Chemica Acta (1993) 1–12.
D. Sankoff and J.B. Kruskal, eds.,Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison (Addison Wesley, Reading, MA, 1983).
T.G. Schmalz, W.A. Seitz, D.J. Klein and G.E. Hite, Elemental carbon cages,J. Amer. Chem. Soc. 110 (1988) 1113–1127.
J. Stoye, Divide and conquer multiple sequence alignment, http://bibiserv.techfak.uni-bielefeld.de/dca/, 1996.
J. Stoye, S.W. Perrey and A.W.M. Dress, Improving the divide-and-conquer approach to sum-of-pairs multiple sequence alignment,Appl. Math. Lett. (1997) to appear.
J. Stoye, Divide-and-conquer multiple sequence alignment, Dissertation, Technische Fakultät der Universität Bielefeld, 1997.
W.R. Taylor, Identification of protein sequence homology by consensus template alignment,J. Mol. Biol. 188, pp. 233–258.
J.D. Thompson, D.G. Higgins and T.J. Gibson, CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,Nucl. Acids Res. 22 (1994) 4673–4680.
U. Tönges, S.W. Perrey, J. Stoye and A.W.M. Dress, A general method for fast multiple sequence alignment,Gene 172 (1996) GC33-GC41.
M. Vingron and P. Argos, Motif recognition and alignment for many sequences by comparison of dotmatrices,J. Mol. Biol. 218 (1991) 33–43.
R.A. Wagner and M.J. Fischer, The string-to-string correction problem,Journal of the ACM 21 (1) (1974) 168–173.
M.S. Waterman,Introduction to Computational Biology. Maps Sequences and Genomes (Chapman & Hall, London, UK, 1995).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brinkmann, G., Dress, A.W.M., Perrey, S.W. et al. Two applications of the divide&conquer principle in the molecular sciences. Mathematical Programming 79, 71–97 (1997). https://doi.org/10.1007/BF02614312
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF02614312