Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Variable metric bundle methods: From conceptual to implementable forms

  • Published:
Mathematical Programming Submit manuscript

Abstract

To minimize a convex function, we combine Moreau-Yosida regularizations, quasi-Newton matrices and bundling mechanisms. First we develop conceptual forms using “reversal” quasi-Newton formulae and we state their global and local convergence. Then, to produce implementable versions, we incorporate a bundle strategy together with a “curve-search”. No convergence results are given for the implementable versions; however some numerical illustrations show their good behaviour even for large-scale problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Auslender, Numerical methods for nondifferentiable convex optimization,Mathematical Programming Study 30 (1987) 102–126.

    MATH  MathSciNet  Google Scholar 

  2. J. Bonnans, J. Gilbert, C. Lemaréchal and C. Sagastizábal, A family of variable metric proximal methods.Mathematical Programming 68 (1995) 15–48.

    MathSciNet  Google Scholar 

  3. U. Brännlund, On relaxation methods for nonsmooth convex optimization, Ph.D. thesis, Royal Institute of Technology (Stockholm, 1993).

  4. E. Cheney and A. Goldstein, Newton’s method for convex programming and Tchebycheft approximations,Numerische Mathematik 1 (1959) 253–268.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization,Mathematical Programming 62 (1993) 261–275.

    Article  MathSciNet  Google Scholar 

  6. J. Dennis and J. Moré. Quasi-Newton methods, motivation and theory,SIAM Review 19 (1977) 46–89.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Fukushima, A descent algorithm for nonsmooth convex optimization,Mathematical Programming 30 (1984) 163–175.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Fukushima and L. Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization,SIAM Journal on Optimization 6 (1996) 1106–1120.

    Article  MATH  MathSciNet  Google Scholar 

  9. O. Güler, On the convergence of the proximal point algorithm for convex minimization,SIAM Journal on Control and Optimization 29 (1991) 403–419.

    Article  MATH  MathSciNet  Google Scholar 

  10. J.-B. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Minimization Algorithms (Springer, Berlin, 1993) (two volumes).

    Google Scholar 

  11. J.E. Kelley, The cutting plane method for solving convex programs,Journal of the Society for Industrial and Applied Mathematics 8 (1960) 703–712.

    Article  MathSciNet  Google Scholar 

  12. K. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization,Mathematical Programming 46 (1990) 105–122.

    Article  MATH  MathSciNet  Google Scholar 

  13. K. Kiwiel, Finding normal solutions in piecewise linear programming,Applied Mathematics and Optimization (1996) to appear.

  14. C. Lemaréchal, A view of line-searches, in: A. Auslender, W. Oettli and J. Stoer, eds.,Optimization and Optimal Control, Lecture Notes in Control and Information Science, Vol. 30 (Springer, Heidelberg, 1981) 59–78.

    Chapter  Google Scholar 

  15. C. Lemaréchal and R. Mifflin, A set of nonsmooth optimization test problems, in: C. Lemaréchal and R. Mifflin, eds.,Nonsmooth Optimization, (Pergamon Press, Oxford, 1978) 151–165.

    Google Scholar 

  16. C. Lemaréchal, A. Nemirovskii and Y. Nesterov, New variants of bundle methods,Mathematical Programming 69 (1995) 111–148.

    Article  MathSciNet  Google Scholar 

  17. C. Lemaréchal, F. Pellegrino, A. Renaud and C. Sagastizábal, Bundle methods applied to the unit-commitment problem, in: J. Doleàl and J. Fidler (eds.),System Modelling and Optimization (Chapmmann and Rall, 1996) 395–402.

  18. C. Lemaréchal and C. Sagastizábal, An approach to variable metric bundle methods, in: J. Henry and J.-P. Yvon, eds.,Systems Modelling and Optimization, Lecture Notes in Control and Information Sciences, Vol. 197 (Springer, Berlin, 1993) 144–162 [Also as Rapport de Recherche INRIA #2128 (1994)].

    Chapter  Google Scholar 

  19. C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau-Yosida regularization: theoretical premilinaries,SIAM Journal on Optimization 7(4) (1997).

  20. C. Lemaréchal, J.-J. Strodiot and A. Bihain, On a bundle method for nonsmooth optimization, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear Programming, Vol. 4 (Academic, New York, 1981) 245–282.

    Google Scholar 

  21. B. Martinet, Régularisation d’inéquations variationnelles par approximations successives,Revue Française d’Informatique et Recherche Opérationnelle R-3 (1970) 154–179.

    MathSciNet  Google Scholar 

  22. R. Mifflin, Semi-smooth and semi-convex functions in constrained optimization,SIAM Journal on Control and Optimization 15 (1977) 959–972.

    Article  MATH  MathSciNet  Google Scholar 

  23. R. Mifflin, A quasi-second-order proximal bundle algorithm,Mathematical Programming 73 (1996) 51–72.

    MathSciNet  Google Scholar 

  24. J. Moré, Recent developments in algorithms and software for trust region methods, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming, the State of the Art (Springer, Berlin, 1983) 258–287.

    Google Scholar 

  25. J. Moreau, Proximité et dualité dans un espace Hilbertien,Bulletin de la Société Mathématique de France 93 (1965) 273–299.

    MATH  MathSciNet  Google Scholar 

  26. M. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in: R. Cottle and C. Lemke, eds.,Nonlinear Programming, SIAM-AMS Proceedings, Vol. 9 (American Mathematical Society, Providence, RI, 1976).

    Google Scholar 

  27. G. Pritchard, G. Gürkan and A. Özge, A note on locally Lipschitzian functions,Mathematical Programming 71 (1995) 369–370.

    MathSciNet  Google Scholar 

  28. L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,Mathematics of Operations Research 18 (1993) 227–244.

    Article  MATH  MathSciNet  Google Scholar 

  29. R. Rockafellar, Monotone operators and the proximal point algorithm,SIAM Journal on Control and Optimization 14 (1976) 877–898.

    Article  MATH  MathSciNet  Google Scholar 

  30. H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results,SIAM Journal on Optimization 2 (1992) 121–152.

    Article  MATH  MathSciNet  Google Scholar 

  31. K. Yosida,Functional Analysis (Springer, Berlin, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude Lemaréchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemaréchal, C., Sagastizábal, C. Variable metric bundle methods: From conceptual to implementable forms. Mathematical Programming 76, 393–410 (1997). https://doi.org/10.1007/BF02614390

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02614390

Keywords

AMS Classification

Navigation