Abstract
To minimize a convex function, we combine Moreau-Yosida regularizations, quasi-Newton matrices and bundling mechanisms. First we develop conceptual forms using “reversal” quasi-Newton formulae and we state their global and local convergence. Then, to produce implementable versions, we incorporate a bundle strategy together with a “curve-search”. No convergence results are given for the implementable versions; however some numerical illustrations show their good behaviour even for large-scale problems.
Similar content being viewed by others
References
A. Auslender, Numerical methods for nondifferentiable convex optimization,Mathematical Programming Study 30 (1987) 102–126.
J. Bonnans, J. Gilbert, C. Lemaréchal and C. Sagastizábal, A family of variable metric proximal methods.Mathematical Programming 68 (1995) 15–48.
U. Brännlund, On relaxation methods for nonsmooth convex optimization, Ph.D. thesis, Royal Institute of Technology (Stockholm, 1993).
E. Cheney and A. Goldstein, Newton’s method for convex programming and Tchebycheft approximations,Numerische Mathematik 1 (1959) 253–268.
R. Correa and C. Lemaréchal, Convergence of some algorithms for convex minimization,Mathematical Programming 62 (1993) 261–275.
J. Dennis and J. Moré. Quasi-Newton methods, motivation and theory,SIAM Review 19 (1977) 46–89.
M. Fukushima, A descent algorithm for nonsmooth convex optimization,Mathematical Programming 30 (1984) 163–175.
M. Fukushima and L. Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization,SIAM Journal on Optimization 6 (1996) 1106–1120.
O. Güler, On the convergence of the proximal point algorithm for convex minimization,SIAM Journal on Control and Optimization 29 (1991) 403–419.
J.-B. Hiriart-Urruty and C. Lemaréchal,Convex Analysis and Minimization Algorithms (Springer, Berlin, 1993) (two volumes).
J.E. Kelley, The cutting plane method for solving convex programs,Journal of the Society for Industrial and Applied Mathematics 8 (1960) 703–712.
K. Kiwiel, Proximity control in bundle methods for convex nondifferentiable minimization,Mathematical Programming 46 (1990) 105–122.
K. Kiwiel, Finding normal solutions in piecewise linear programming,Applied Mathematics and Optimization (1996) to appear.
C. Lemaréchal, A view of line-searches, in: A. Auslender, W. Oettli and J. Stoer, eds.,Optimization and Optimal Control, Lecture Notes in Control and Information Science, Vol. 30 (Springer, Heidelberg, 1981) 59–78.
C. Lemaréchal and R. Mifflin, A set of nonsmooth optimization test problems, in: C. Lemaréchal and R. Mifflin, eds.,Nonsmooth Optimization, (Pergamon Press, Oxford, 1978) 151–165.
C. Lemaréchal, A. Nemirovskii and Y. Nesterov, New variants of bundle methods,Mathematical Programming 69 (1995) 111–148.
C. Lemaréchal, F. Pellegrino, A. Renaud and C. Sagastizábal, Bundle methods applied to the unit-commitment problem, in: J. Doleàl and J. Fidler (eds.),System Modelling and Optimization (Chapmmann and Rall, 1996) 395–402.
C. Lemaréchal and C. Sagastizábal, An approach to variable metric bundle methods, in: J. Henry and J.-P. Yvon, eds.,Systems Modelling and Optimization, Lecture Notes in Control and Information Sciences, Vol. 197 (Springer, Berlin, 1993) 144–162 [Also as Rapport de Recherche INRIA #2128 (1994)].
C. Lemaréchal and C. Sagastizábal, Practical aspects of the Moreau-Yosida regularization: theoretical premilinaries,SIAM Journal on Optimization 7(4) (1997).
C. Lemaréchal, J.-J. Strodiot and A. Bihain, On a bundle method for nonsmooth optimization, in: O. Mangasarian, R. Meyer and S. Robinson, eds.,Nonlinear Programming, Vol. 4 (Academic, New York, 1981) 245–282.
B. Martinet, Régularisation d’inéquations variationnelles par approximations successives,Revue Française d’Informatique et Recherche Opérationnelle R-3 (1970) 154–179.
R. Mifflin, Semi-smooth and semi-convex functions in constrained optimization,SIAM Journal on Control and Optimization 15 (1977) 959–972.
R. Mifflin, A quasi-second-order proximal bundle algorithm,Mathematical Programming 73 (1996) 51–72.
J. Moré, Recent developments in algorithms and software for trust region methods, in: A. Bachem, M. Grötschel and B. Korte, eds.,Mathematical Programming, the State of the Art (Springer, Berlin, 1983) 258–287.
J. Moreau, Proximité et dualité dans un espace Hilbertien,Bulletin de la Société Mathématique de France 93 (1965) 273–299.
M. Powell, Some global convergence properties of a variable metric algorithm for minimization without exact line searches, in: R. Cottle and C. Lemke, eds.,Nonlinear Programming, SIAM-AMS Proceedings, Vol. 9 (American Mathematical Society, Providence, RI, 1976).
G. Pritchard, G. Gürkan and A. Özge, A note on locally Lipschitzian functions,Mathematical Programming 71 (1995) 369–370.
L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations,Mathematics of Operations Research 18 (1993) 227–244.
R. Rockafellar, Monotone operators and the proximal point algorithm,SIAM Journal on Control and Optimization 14 (1976) 877–898.
H. Schramm and J. Zowe, A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results,SIAM Journal on Optimization 2 (1992) 121–152.
K. Yosida,Functional Analysis (Springer, Berlin, 1964).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lemaréchal, C., Sagastizábal, C. Variable metric bundle methods: From conceptual to implementable forms. Mathematical Programming 76, 393–410 (1997). https://doi.org/10.1007/BF02614390
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02614390