Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Formulations and valid inequalities for the node capacitated graph partitioning problem

  • Published:
Mathematical Programming Submit manuscript

Abstract

We investigate the problem of partitioning the nodes of a graph under capacity restriction on the sum of the node weights in each subset of the partition. The objective is to minimize the sum of the costs of the edges between the subsets of the partition. This problem has a variety of applications, for instance in the design of electronic circuits and devices. We present alternative integer programming formulations for this problem and discuss the links between these formulations. Having chosen to work in the space of edges of the multicut, we investigate the convex hull of incidence vectors of feasible multicuts. In particular, several classes of inequalities are introduced, and their strength and robustness are analyzed as various problem parameters change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.H. Aghezzaf, “Optimal constrained rooted subtrees and partitioning problems on tree graphs,” Doctoral Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1992).

    Google Scholar 

  2. F. Barahona, “The max-cut problem in graphs not contractible toK 5Operations Research Letters 2 (1983) 107–111.

    Article  MATH  MathSciNet  Google Scholar 

  3. F. Barahona and A.R. Mahjoub, “On the cut polytope,”Mathematical Programming 36 (1986) 157–173.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Chopra and M.R. Rao, “The partition problem,”Mathematical Programming 59 (1993) 87–116.

    Article  MathSciNet  Google Scholar 

  5. M. Conforti, M.R. Rao and A. Sassano, “The equipartition polytope I,”Mathematical Programming 49 (1990) 49–70.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Conforti, M.R. Rao and A. Sassano, “The equipartition polytope II,”Mathematical Programming 49 (1990) 71–90.

    Article  MATH  MathSciNet  Google Scholar 

  7. C.E. Ferreira, A. Martin, C.C. de Souza, R. Weismantel and L.A. Wolsey, “The node capacitated graph partitioning problem: A computational study, submitted.

  8. M. Grötschel and Y. Wakabayashi, “Facets of the clique partitioning polytope,”Mathematical Programming 47 (1990) 367–387.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Grötschel and Y. Wakabayashi, “A cutting plane algorithm for a clustering problem,”Mathematical Programming 45 (1989) 59–96.

    Article  MATH  MathSciNet  Google Scholar 

  10. E. Johnson, A. Mehrotra and G.L. Nemhauser, “Min-cut clustering,”Mathematical Programming 62 (1993) 133–152.

    Article  MathSciNet  Google Scholar 

  11. T. Lengauer,Combinatorial Algorithms for Integrated Circuit Layout (Wiley, New York, 1990).

    MATH  Google Scholar 

  12. L. Lovasz and M.D. Plummer, “Matching theory,” inAnnals of Discrete Mathematics 29 (North-Holland, Amsterdam, 1986).

    Google Scholar 

  13. C.C. de Souza, “The graph equipartition problem: Optimal solutions, extensions and applications,” Doctoral Thesis, Université Catholique de Louvain Louvain-la-Neuve, Belgium (1993).

    Google Scholar 

  14. C.C. de Souza and M. Laurent, “Some new classes of facets for the equicut polytope,”Discrete Applied Mathematics 62 (1995) 167–191.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Vanderbeck, “Decomposition and column generation for integer programs,” Doctoral Thesis, Faculté des Sciences Appliquées, Université Catholique de Louvain, Louvain-la-Neuve, Belgium (1994).

    Google Scholar 

  16. R. Weismantel, “Plazieren von Zellen: Theorie and Lösung eines quadratischen 0–1 Optimierungsproblem,” Technical Report TR 92-3, Konrad-Zuse-Zentrum für Informationstechnik, Berlin (1993).

    Google Scholar 

  17. H. Whitney, “Non-separable and planar graphs,”Transactions of the American Mathematical Society 34 (1932) 339–362.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira, C.E., Martin, A., de Souza, C.C. et al. Formulations and valid inequalities for the node capacitated graph partitioning problem. Mathematical Programming 74, 247–266 (1996). https://doi.org/10.1007/BF02592198

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02592198

Keywords

Navigation