Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An exact penalty function for semi-infinite programming

  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper introduces a global approach to the semi-infinite programming problem that is based upon a generalisation of the ℓ1 exact penalty function. The advantages are that the ensuing penalty function is exact and the penalties include all violations. The merit function requires integrals for the penalties, which provides a consistent model for the algorithm. The discretization is a result of the approximate quadrature rather than an a priori aspect of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T.M. Apostol,Mathematical Analysis, 2nd edition (Addison-Wesley, Reading, MA., 1974).

    MATH  Google Scholar 

  • D.P. Bertsekas,Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York, 1982).

    MATH  Google Scholar 

  • J.M. Borwein, “Semi-infinite programming duality: how special is it?,” in: A.V. Fiacco and K.O. Kortanek, eds.Semi-Infinite Programming and Applications, Lecture notes in economic and mathematical systems 215 (Springer-Verlag, New York 1983) pp. 10–36.

    Google Scholar 

  • T.F. Coleman and D.C. Sorensen, “A note on the computation of an orthonormal basis for the null space of a matrix,”Mathematical Programming 29 (1984) 234–242.

    MATH  MathSciNet  Google Scholar 

  • A.R. Conn and T. Pietrzykowski, “A penalty function method converging directly to a constrained optimum,”SIAM Journal on Numerical Analysis 14 (1977) 348–375.

    Article  MATH  MathSciNet  Google Scholar 

  • I.D. Coope and G.A. Watson, “A projected Lagrangian algorithm for semi-infinite programming,”Mathematical Programming 32 (1985) 337–356.

    Article  MATH  MathSciNet  Google Scholar 

  • J. Edwards,A Treatise on the Integral Calculus, with Applications, Examples and Problems, Volume 2 (Macmillan, London, 1922).

    Google Scholar 

  • I.I. Eremin and VI.D. Mazurov, “Iterationmethon for solving problems of convex programming,”Soviet Physics-Doklady 9 (1967) 757–759.

    MathSciNet  Google Scholar 

  • A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983).

    MATH  Google Scholar 

  • Yu. B. Germeyer, “Approximate reduction of the problem of determining a maximum by means of penalty functions,”USSR Computational Mathematics and Mathematical Physics 9 (1969) 325–328.

    Article  Google Scholar 

  • H. Gfrerer, J. Guddat, Hj Wacker and W. Zulehner, “Globalization of locally convergent algorithms for nonlinear optimization problems with constraints,” in: A.V. Fiacco and K.O. Kortanek, eds., Lecture notes in economic and mathematical system 215 (Springer-Verlag, New York, 1983) pp. 128–137.

    Google Scholar 

  • P.E. Gill, W. Murray and M.H. Wright,Practical Optimization (Academic Press, New York, 1981).

    MATH  Google Scholar 

  • S.-A. Gustafson, “A three-phase algorithm for semi-infinite programs”, in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-Infinite Programming and Applications, Lecture, notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 138–157.

    Google Scholar 

  • R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information sciences 15 (Springer-Verlag, New York, 1979).

    MATH  Google Scholar 

  • R. Hettich and W. Van Honstede, “On quadratically convergent methods for semi-infinite programming,” in: R. Hettich, ed.,Semi-infinite Programming, Lecture notes in control and information science 15 (Springer-Verlag, New York, 1979) pp. 97–111.

    Chapter  Google Scholar 

  • T. Pietrzykowski, “An exact potential method for constrained maxima,”SIAM Journal of Numerical Analysis 6 (1969) 299–304.

    Article  MATH  MathSciNet  Google Scholar 

  • T. Pietrzykowski, “The potential method for conditional maxima in locally compact metric spaces,”Numerische Mathematik 14 (1970) 325–329.

    Article  MATH  MathSciNet  Google Scholar 

  • R.T. Rockafellar,Convex Analysis (Princeton University Press, Princeton, N.J., 1970).

    MATH  Google Scholar 

  • G.A. watson, “Globally convergent methods for semi-infinite programming,”Nordisk Tidskrift for Informationsbehandling (BIT) 21 (1981) 36–373.

    Google Scholar 

  • G.A. Watson, “Numerical experiments with globally convergent methods for semi-infinite programming problems,” in: A.V. Fiacco and K.O. Kortanek, eds.,Semi-infinite Programming and Applications, Lecture notes in economics and mathematical systems 215 (Springer-Verlag, New York, 1983) pp. 193–205.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was partially supported by Natural Sciences and Engineering Research Council of Canada grants A-8639 and A-8442. This paper was typeset using software developed at Bell Laboratories and the University of California at Berkeley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conn, A.R., Gould, N.I.M. An exact penalty function for semi-infinite programming. Mathematical Programming 37, 19–40 (1987). https://doi.org/10.1007/BF02591681

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02591681

Key words

Navigation