Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Chebyshev acceleration techniques for large complex non hermitian eigenvalue problems

Техника ускорения по Чебышеву для болъших задач нахождения собственных значений не-эрмитовых комплексных матриц

  • Published:
Reliable Computing

Abstract

We propose an extension of the Arnoldi-Chebyshev algorithm to the large complex non Hermitian case. We demonstrate the algorithm on two applied problems.

Abstract

Предлагается обобшение алгоритма Арнольди-Небышева для случая болыших комплексных неэрмитовых матрип. Работа алгоритма продемонстрирована на примере двух приклалных задач.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chatelin, F., Ho, D., and Bennani, M.Arnoldi-Tchebychev procedure for large scale nonsymmetric matrices. Mathematical Modelling and Numerical Analysis1 (1990), pp. 53–65.

    MathSciNet  Google Scholar 

  2. Duff, I. S., Grimes, R. G., and Lewis, J. G.Sparse matrix test problems. ACM Trans. Math. Softw.15 (1989), pp. 1–14.

    Article  Google Scholar 

  3. Fischer, B. and Freund, R.Chebyshev polynomials are not always optimal. J. Approximation Theory65 (1991), pp. 261–273.

    Article  MathSciNet  Google Scholar 

  4. Heuveline, V.Polynomial acceleration in the complex plane. Technical report, Irisa/Inria, 1995.

  5. Ho, D.Tchebychev acceleration technique for large scale nonsymmetric matrices. Numer. Math.56 (1990), pp. 721–734.

    Article  MATH  MathSciNet  Google Scholar 

  6. Kerner, W.Large-scale complex eigenvalue problems. J. Comp. Phys.85 (1989), pp. 1–85.

    Article  MATH  MathSciNet  Google Scholar 

  7. Manteuffel, T. A.The Tchebychev iteration for nonsymmetric linear system. Numer. Math.28 (1977), pp. 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  8. Manteuffel, T. A.Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev iteration. Numer. Math.31 (1978), pp. 183–208.

    Article  MATH  MathSciNet  Google Scholar 

  9. Moler, C. B. and Stewart, G. W.An algorithm for generalized matrix eigenvalue problems. SIAM J. Num. Anal.10 (1973), pp. 241–256.

    Article  MathSciNet  Google Scholar 

  10. Rivlin, T. J.The Chebyshev polynomials: from approximation theory to algebra and number theory. J. Wiley and Sons Inc., New-York, 1990.

    Google Scholar 

  11. Saad, Y.Numerical methods for large eigenvalue problems. Algorithms and architectures for advanced scientific computing. Manchester University Press, Manchester, 1992.

    Google Scholar 

  12. Sadkane, M.A block Arnoldi-Chebyshev method for computing the leading eigenpairs of large sparse unsymmetric matrices. Numer. Math.64 (1993), pp. 181–193.

    Article  MATH  MathSciNet  Google Scholar 

  13. Yamamoto, Y. and Ohtsubo, H.Subspace iteration accelerated by using Chebyshev polynomials for eigenvalue problems with symmetric matrices. Int. J. Numer. Methods Eng.10 (1976), pp. 935–944.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

© V. Heuveline, M. Sadkane, 1996

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuveline, V., Sadkane, M. Chebyshev acceleration techniques for large complex non hermitian eigenvalue problems. Reliable Comput 2, 111–117 (1996). https://doi.org/10.1007/BF02425912

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02425912

Keywords

Navigation