Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

ℜ-Netzwerke und Matrixalgorithmen

ℜ-networks and matrix algorithms

  • Published:
Computing Aims and scope Submit manuscript

Zusammenfassung

Floyd entwickelte einen Matrixalgorithmus zur Bestimmung der Längen aller kürzesten Wege in einem Netzwerk. In der vorliegenden Arbeit wird gezeigt, daß, falls man den Begriff des Netzwerkes etwas verallgemeinert, sich mit Hilfe des gleichen Verfahrens eine Fülle von grundverschiedenen Problemen lösen läßt. Es wird eine entsprechende Theorie entwickelt und an Beispielen erläutert.

Abstract

Floyd developed a matrix algorithm to find all shortest paths in a network. If we modify the algebraic structure of the network the same algorithm can be applied to large number of other problems. A general theory for these algorithms is developed and applied to numerous problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  1. Berge, C.: Theorie des graphes et ses applications. Paris: Dunod. Englische Übersetzung vonA. Doing, London: Methuen. 1962.

    Google Scholar 

  2. Caré, B. A.: An algebra for network routing problems. Journal of the Institute of Mathematics and its Applications7, 273–293 (1971).

    MathSciNet  Google Scholar 

  3. Dantzig, G. B.: All shortest routes in a graph, in: Theory of graphs, International Symposium, Rom, 1966, S. 91–92. New York: Gorden & Breach.

  4. Floyd, R. W.: Algorithm 97, shortest path. Communications of the A. C. M.5, 345 (1962).

    Google Scholar 

  5. Hammer, R. L.: Pseudo-boolean remarks on balanced graphs. Operations Research, Statistics and Economics Mineograph Series No. 34, University of Montreal. 1969.

  6. Harary, F., R. Z. Norman, andD. Cartwright: Structural models. An introduction to the theory of directed graphs. New York-London-Sydney: J. Wiley. 1965.

    Google Scholar 

  7. Murchland, J. D.: A new method for finding all elementary paths in a complete directed graph. Report LBS-TNT-25, Transport network theory unit, London Graduate School of Business Studies (March 1966).

  8. Warshall, S.: A theorem on boolean matrices. J. A. C. M.9, 11–18 (1962).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brucker, P. ℜ-Netzwerke und Matrixalgorithmen. Computing 10, 271–283 (1972). https://doi.org/10.1007/BF02316913

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02316913

Navigation