Abstract
Consider the following generalization of the classical job-shop scheduling problem in which a set of machines is associated with each operation of a job. The operation can be processed on any of the machines in this set. For each assignment μ of operations to machines letP(μ) be the corresponding job-shop problem andf(μ) be the minimum makespan ofP(μ). How to find an assignment which minimizesf(μ)? For problems with two jobs a polynomial algorithm is derived.
Zusammenfassung
Folgende Verallgemeinerung des klassischen Job-Shop Scheduling Problems wird untersucht. Jeder Operation eines Jobs sei eine Menge von Maschinen zugeordnet. Wählt man für jede Operation genau eine Maschine aus dieser Menge aus, so erhält man ein klassisches Job-Shop Problem, dessen minimale Gesamtbearbeitungszeitf(μ) von dieser Zuordnung μ abhängt. Gesucht ist eine Zuordnung μ, dief(μ) minimiert. Für zwei Jobs wird ein polynomialer Algorithmus entwickelt, der dieses Problem löst.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akers, S. B., A graphical approach to production scheduling problems. Operations Research4, 244–245 (1956).
Brucker, P., An efficient algorithm for the job-shop problem with two jobs, Computing40, 353–359 (1988).
Hardgrave, W. H., Nemhauser, G. L., A geometric model and a graphical algorithm for a sequencing problem. Operations Research11, 889–900 (1963).
Sotskov, Y. N., The complexity of shop-scheduling problems with two or three jobs. European Journal of Operations Research (in press).
Szwarc, W., Solution of the Akers-Friedman scheduling problem. Operations Research8, 782–788 (1960).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brucker, P., Schlie, R. Job-shop scheduling with multi-purpose machines. Computing 45, 369–375 (1990). https://doi.org/10.1007/BF02238804
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02238804