Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable operators

Über die Konvergenz gewisser Quasi-Newton-Verfahren für nichtlineare Gleichungen mit nichtdifferenzierbaren Operatoren

  • Short Communication
  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we study the convergence of some quasi-Newton methods for solving nonlinear equationAx+g(x)=0 in a domainD⊄R n, whereA is ann×n matrix andg is a nondifferentiable but Lipschitz continuous operator. By interval analysis, we give a new convergence theorem of the methods.

Zusammenfassung

In der vorliegenden Arbeit wird die Konvergenz gewisser Quasi-Newton-Verfahren zur Lösung von nichtlinearen GleichungenAx+g(x)=0 aufD⊄R n untersucht, wobeiA eine (n×n)-Matrix undg ein nichtdifferenzierbarer, aber Lip-schitz-stetiger Operator ist. Mittels intervallanalytischer Techniken wird ein neuer Konvergenzsatz für die Verfahren hergeleitet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Barth, W., Nuding, E.: Optimale Lösung von Intervallgleihungssystemen. Comp.12, 117–125 (1974).

    Google Scholar 

  2. Broyden, C. G., Dennis, J. E. Jr., More, J. J.: On the local and superlinear convergence of quasi-Newton methods. J. Inst. Math. Appl.12, 223–245 (1973).

    Google Scholar 

  3. Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. and Optimiz.10, 37–48 (1989).

    Google Scholar 

  4. Chen, X.: On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms. Ann. Inst. Statist. Math.42, 387–401 (1990).

    Google Scholar 

  5. Heinkenschloss, M., Kelley, C. T., Tran, H. T.: Fast algorithms for nonsmooth compact fixed point problems, Preprint (1991).

  6. Krawczyk, R.: Interval operators of a function of which the Lipschitz matrix is an interval M-matrix. Comp.31, 245–253 (1983).

    Google Scholar 

  7. More, J. J., Trangenstein, J. A.: On the global convergence of Broyden's method. Math. Comp.30, 532–540 (1976).

    Google Scholar 

  8. Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.

    Google Scholar 

  9. Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, N.J.: Prentice-Hall 1963.

    Google Scholar 

  10. Yamamoto, T.: A note on a posteriori error bound of Zabrejko and Nguen for Zincenko's iteration. Numer. Funct. Anal. and Optimiz.9, 987–994 (1987).

    Google Scholar 

  11. Zabrejko, P. P., Nguen, D.F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. and Optimiz.9, 671–684 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Yamamoto, T. On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable operators. Computing 49, 87–94 (1992). https://doi.org/10.1007/BF02238652

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02238652

AMS Subject Classifications

Key words

Navigation