Abstract
In this paper, we study the convergence of some quasi-Newton methods for solving nonlinear equationAx+g(x)=0 in a domainD⊄R n, whereA is ann×n matrix andg is a nondifferentiable but Lipschitz continuous operator. By interval analysis, we give a new convergence theorem of the methods.
Zusammenfassung
In der vorliegenden Arbeit wird die Konvergenz gewisser Quasi-Newton-Verfahren zur Lösung von nichtlinearen GleichungenAx+g(x)=0 aufD⊄R n untersucht, wobeiA eine (n×n)-Matrix undg ein nichtdifferenzierbarer, aber Lip-schitz-stetiger Operator ist. Mittels intervallanalytischer Techniken wird ein neuer Konvergenzsatz für die Verfahren hergeleitet.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Barth, W., Nuding, E.: Optimale Lösung von Intervallgleihungssystemen. Comp.12, 117–125 (1974).
Broyden, C. G., Dennis, J. E. Jr., More, J. J.: On the local and superlinear convergence of quasi-Newton methods. J. Inst. Math. Appl.12, 223–245 (1973).
Chen, X., Yamamoto, T.: Convergence domains of certain iterative methods for solving nonlinear equations. Numer. Funct. Anal. and Optimiz.10, 37–48 (1989).
Chen, X.: On the convergence of Broyden-like methods for nonlinear equations with nondifferentiable terms. Ann. Inst. Statist. Math.42, 387–401 (1990).
Heinkenschloss, M., Kelley, C. T., Tran, H. T.: Fast algorithms for nonsmooth compact fixed point problems, Preprint (1991).
Krawczyk, R.: Interval operators of a function of which the Lipschitz matrix is an interval M-matrix. Comp.31, 245–253 (1983).
More, J. J., Trangenstein, J. A.: On the global convergence of Broyden's method. Math. Comp.30, 532–540 (1976).
Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.
Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, N.J.: Prentice-Hall 1963.
Yamamoto, T.: A note on a posteriori error bound of Zabrejko and Nguen for Zincenko's iteration. Numer. Funct. Anal. and Optimiz.9, 987–994 (1987).
Zabrejko, P. P., Nguen, D.F.: The majorant method in the theory of Newton-Kantorovich approximations and the Pták error estimates. Numer. Funct. Anal. and Optimiz.9, 671–684 (1987).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chen, X., Yamamoto, T. On the convergence of some quasi-Newton methods for nonlinear equations with nondifferentiable operators. Computing 49, 87–94 (1992). https://doi.org/10.1007/BF02238652
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02238652