Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

A quasi-Newton method for minimization under linear constraints without evaluating any derivatives

Eine Quasi-Newton-Methode zur Minimierung unter linearen Nebenbedingungen ohne Verwendung von Ableitungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper a method is described for solving linearly constrained nonlinear programming problems without evaluating any derivatives of the objective function. The algorithm uses the concept of active constraints and avoids the calculation of derivatives by approximating modified gradients and Hessian matrices by the aid of differences of function values. These approximations are calculated in such a way that the same convergence results are obtained as for any Quasi-Newton method.

Zusammenfassung

Es wird ein Verfahren beschrieben, das nichtlineare Optimierungsprobleme mit linearen Nebenbedingungen löst, ohne daß Ableitungen der Zielfunktion berechnet werden müssen. Der Algorithmus verwendet das Konzept der aktiven Nebenbedingungen und vermeidet die Berechnung von Ableitungen, indem modifizierte Gradienten und Hessesche Matrizen mit Hilfe von Funktionswertdifferenzen approximiert werden. Diese Approximationen werden so berechnet, daß man dieselben Konvergenzergebnisse erhält wie für jede Quasi-Newton-Methode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bräuninger, J.: A Quasi-Newton method for unconstrained minimization without calculating any derivatives. Methods of Operations Research23, 17–31 (1977).

    Google Scholar 

  2. Bräuninger, J.: Methoden zur Lösung von Optimierungsproblemen ohne Verwendung von Ableitungen. Dissertation, Universität Stuttgart, 1977.

  3. Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1960.

    Google Scholar 

  4. Fischer, J.: On minimization under linear equality constraints, in: Optimization and Operations Research (Oettli, W., Ritter, K., eds.). Berlin-Heidelberg-New York: Springer 1976.

    Google Scholar 

  5. Goldstein, A. A., Price, J. F.: An effective algorithm for minimization. Numerische Mathematik10, 184–189 (1967).

    Article  Google Scholar 

  6. Himmelblau, D. M.: Applied nonlinear programming. New York: McGraw-Hill, 1972.

    Google Scholar 

  7. May, J. H.: Solving nonlinear programs without using analytic derivatives. Part 1: A modified Newton method for linear constraints. Part 2: Modified Newton method-implementation and numerical results. Working Papers, 153, 162 (1976), Graduate School of Business, University of Pittsburgh.

    Google Scholar 

  8. Ritter, K.: A superlinearly convergent method for minimization problems with linear inequality constraints. Mathematical Programming4, 44–71 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräuninger, J. A quasi-Newton method for minimization under linear constraints without evaluating any derivatives. Computing 21, 127–141 (1979). https://doi.org/10.1007/BF02253133

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253133

Keywords

Navigation