Abstract
In this paper a method is described for solving linearly constrained nonlinear programming problems without evaluating any derivatives of the objective function. The algorithm uses the concept of active constraints and avoids the calculation of derivatives by approximating modified gradients and Hessian matrices by the aid of differences of function values. These approximations are calculated in such a way that the same convergence results are obtained as for any Quasi-Newton method.
Zusammenfassung
Es wird ein Verfahren beschrieben, das nichtlineare Optimierungsprobleme mit linearen Nebenbedingungen löst, ohne daß Ableitungen der Zielfunktion berechnet werden müssen. Der Algorithmus verwendet das Konzept der aktiven Nebenbedingungen und vermeidet die Berechnung von Ableitungen, indem modifizierte Gradienten und Hessesche Matrizen mit Hilfe von Funktionswertdifferenzen approximiert werden. Diese Approximationen werden so berechnet, daß man dieselben Konvergenzergebnisse erhält wie für jede Quasi-Newton-Methode.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bräuninger, J.: A Quasi-Newton method for unconstrained minimization without calculating any derivatives. Methods of Operations Research23, 17–31 (1977).
Bräuninger, J.: Methoden zur Lösung von Optimierungsproblemen ohne Verwendung von Ableitungen. Dissertation, Universität Stuttgart, 1977.
Dieudonné, J.: Foundations of modern analysis. New York: Academic Press 1960.
Fischer, J.: On minimization under linear equality constraints, in: Optimization and Operations Research (Oettli, W., Ritter, K., eds.). Berlin-Heidelberg-New York: Springer 1976.
Goldstein, A. A., Price, J. F.: An effective algorithm for minimization. Numerische Mathematik10, 184–189 (1967).
Himmelblau, D. M.: Applied nonlinear programming. New York: McGraw-Hill, 1972.
May, J. H.: Solving nonlinear programs without using analytic derivatives. Part 1: A modified Newton method for linear constraints. Part 2: Modified Newton method-implementation and numerical results. Working Papers, 153, 162 (1976), Graduate School of Business, University of Pittsburgh.
Ritter, K.: A superlinearly convergent method for minimization problems with linear inequality constraints. Mathematical Programming4, 44–71 (1973).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bräuninger, J. A quasi-Newton method for minimization under linear constraints without evaluating any derivatives. Computing 21, 127–141 (1979). https://doi.org/10.1007/BF02253133
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02253133