Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The collocation method for the numerical approximation of the periodic solutions of functional differential equations

Die Kollokationsmethode für die numerische Approximation der periodischen Lösungen von Funktionaldifferentialgleichungen

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A collocation method with trigonometric trial functions is presented form-order non-linear functional differential equations with periodicity boundary conditions. In general, uniform approximation of an isolated solution and of its firstm−1 derivatives is achieved, while them-derivative is approximated in mean square. In some special cases we have also the uniform approximation of them-derivative. The solution of then-th non-linear collocation equation may be approximated by Newton's iteration with an arbitrary starting point belonging to a suitable neighbourhood of an isolated solution, for alln>n 0 withn 0 large enough.

Zusammenfassung

Es wird eine Kollokationsmethode mit trigonometrischen Basisfunktionen für nicht lineare Funktionaldifferentialgleichungenm-ter Ordnung mit periodischen Randbedingungen vorgeschlagen. Allgemein wird eine gleichmäßige Approximation einer isolierten Lösung und ihrer erstenm−1 Ableitungen erhalten, während diem-te Ableitung nur im quadratischen Mittelwert approximiert wird. In einigen Spezialfällen bekommt man jedoch auch eine gleichmäßige Approximation derm-ten Ableitung. Für allen>n 0, mit genügend großemn 0, kann die Lösung dern-ten nichtlinearen Kollokationsgleichung durch die Newtonsche Iterationsmethode mit einer der isolierten Lösung genügend nahen Anfangsnäherung approximiert werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bouc, R.: Sur la méthode de Galerkin-Urabe pour les systèmes différentiels périodiques. Int. J. Nonlinear Mech.7, 175–188 (1972).

    Article  Google Scholar 

  2. Bouc, R.: Equations différentielles et fonctionelles non linéaire. Equa. Diff.73, 44–54. Paris: Hermann 1974.

    Google Scholar 

  3. Burkowski, F. J., Cowan, D. D.: The numerical derivation of a periodic solution of a second order differential difference equation. SIAM J. Numer. Anal.10, 489–495 (1973).

    Article  Google Scholar 

  4. Honig, C. S.: The Green function of a linear differential equation with lateral condition. Bull. Amer. Math. Soc.79, 587–593 (1973).

    Google Scholar 

  5. Invernizzi, S., Zanolin, F.: On the existence and uniqueness of periodic solutions of differential delay equations. Math. Z.163, 25–37 (1978).

    Article  Google Scholar 

  6. Krasnoselskii, M. A., et al.: Approximate solution of operator equations. Groningen: Wolters-Noordhoff 1972.

    Google Scholar 

  7. Natason, I. P.: Constructive theory of functions. Moscow: Gostekhizdat 1955. (English transl. AECT n. 4503.)

    Google Scholar 

  8. Oussalah, A.: Méthodes numériques pour la détermination de solutions périodiques d'équations différentielles périodiques à argument retardé. Thèse du doctorat, 1977.

  9. Urabe, M.: Galerkin's procedure for non linear periodic systems. Arch. Ration. Mech. Anal.20, 120–151 (1965).

    Article  Google Scholar 

  10. Urabe, M., Reiter, A.: Numerical computation of non linear forced oscillation by Galerkin's procedure. J. Math. Anal. Appl.14, 107–140 (1966).

    Google Scholar 

  11. Vainikko, G.: The convergence of the collocation method for non-linear differential equations. Zh. vychisl. Mat. Fiz.6, 35–42 (1966).

    Google Scholar 

  12. Zygmund, A.: Trigonometric Series. Cambridge Univ. Press 1968.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellen, A. The collocation method for the numerical approximation of the periodic solutions of functional differential equations. Computing 23, 55–66 (1979). https://doi.org/10.1007/BF02252613

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252613

Keywords

Navigation