Abstract
Fromf(x)=x n −r and a polynomialQ p (y)=∑ pi=0 a i y i, we consider Newton's method to solveF p (x)=Q p (f(x))=0. We obtain convergent iterative methods of orderp+1 to findr 1/n for arbitraryp.
Zusammenfassung
Fürf(x)=x n −r und ein PolynomQ p (y)=∑ pi=0 a i y i betrachten wir das Newton-Verfahren fürF p (x)=Q p (f(x))=0. Wir erhalten so konvergente iterative Verfahren der Ordnungp+1 fürr 1/n, mit beliebigemp.
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Dennis, J. E., Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations, Englewood Cliffs: Prentice-Hall, 1983.
Gerlach, J.: Acoelerated convergence in Newton's method. SIAM Rev.36, 272–276 (1994).
Goldstein, A. A.: Constructive real analysis. New York: Harper and Row, 1967.
Johnson, K. R.: An iterative method for approximating square roots. Math. Mag.62, 253–259 (1989).
Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs: Prentice-Hall, 1964.
Yeyios, A. K.: On two sequences of algorithms for approximating square roots. J. Comput. Appl. Math.40, 63–72 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Dubeau, F. Algorithms forn-th root approximation. Computing 57, 365–369 (1996). https://doi.org/10.1007/BF02252255
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02252255