Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Algorithms forn-th root approximation

Algorithmen zur Approximation dern-ten Wurzel

  • Short Communication
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Fromf(x)=x n −r and a polynomialQ p (y)=∑ pi=0 a i y i, we consider Newton's method to solveF p (x)=Q p (f(x))=0. We obtain convergent iterative methods of orderp+1 to findr 1/n for arbitraryp.

Zusammenfassung

Fürf(x)=x n −r und ein PolynomQ p (y)=∑ pi=0 a i y i betrachten wir das Newton-Verfahren fürF p (x)=Q p (f(x))=0. Wir erhalten so konvergente iterative Verfahren der Ordnungp+1 fürr 1/n, mit beliebigemp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dennis, J. E., Schnabel, R. B.: Numerical methods for unconstrained optimization and nonlinear equations, Englewood Cliffs: Prentice-Hall, 1983.

    Google Scholar 

  2. Gerlach, J.: Acoelerated convergence in Newton's method. SIAM Rev.36, 272–276 (1994).

    Google Scholar 

  3. Goldstein, A. A.: Constructive real analysis. New York: Harper and Row, 1967.

    Google Scholar 

  4. Johnson, K. R.: An iterative method for approximating square roots. Math. Mag.62, 253–259 (1989).

    Google Scholar 

  5. Traub, J. F.: Iterative methods for the solution of equations. Englewood Cliffs: Prentice-Hall, 1964.

    Google Scholar 

  6. Yeyios, A. K.: On two sequences of algorithms for approximating square roots. J. Comput. Appl. Math.40, 63–72 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubeau, F. Algorithms forn-th root approximation. Computing 57, 365–369 (1996). https://doi.org/10.1007/BF02252255

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02252255

AMS Subject Classifications

Key words

Navigation