Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On theR-order of some accelerated methods for the simultaneous finding of polynomial zeros

Über dieR-Ordnung einiger beschleunigter Verfahren zur simultanen Polynomwurzelbestimmung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

A Gauss-Seidel procedure is applied to increase the convergence of a basic fourth order method for finding polynomial complex zeros. Further acceleration of convergence is performed by using Newton's and Halley's corrections. It is proved that the lower bounds of theR-order of convergence for the proposed serial (single-step) methods lie between 4 and 7. Computational efficiency and numerical examples are also given.

Zusammenfassung

Ein Gauss-Seidel Verfahren wird verwendet zur Beschleunigung der Konvergenz eines Verfahrens vierter Ordnung zur Bestimmung komplexer Polynomwurzeln. Eine weitere Beschleunigung der Konvergenz wird erreicht durch Anwendung von Newton und Halley-Korrekturformeln. Es wird bewiesen, daß die unteren Schranken für dieR-Ordnung der vorgeschlagenen seriellen (Einzelschritt-) Verfahren zwischen 4 und 7 liegen. Die Effizienzzahl und ein numerisches Beispiel wird angegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aberth, O.: Iteration methods for finding all zeros of a polynomial simultaneously. Math. Comp.27, 339–344 (1973).

    Google Scholar 

  2. Alefeld, G., Herzberger, J.: On the convergence speed of some algorithms for the simultaneous approximation of polynomial zeros. SIAM J. Numer. Anal.11, 237–243 (1974).

    Google Scholar 

  3. Ehrlich, L. W.: A modified Newton method for polynomials. Comm. ACM10, 107–108 (1967).

    Google Scholar 

  4. Gargantini, I.: Further applications of circular arithmetic: Schroeder-like algorithms with error bounds for finding zeros of polynomials. SIAM J. Numer. Anal.15, 497–510 (1978).

    Google Scholar 

  5. Hansen, E., Patrick, M.: A family of root finding methods. Numer. Math.27, 257–269 (1977).

    Google Scholar 

  6. Maehly, V. H.: Zur iterativen Auflösung algebraischer Gleichungen. Z. Angew. Math. Phys.5, 260–263 (1954).

    Google Scholar 

  7. Milovanović, G. V., Petković, M. S.: On the convergence order of a modified method for simultaneous finding polynomial zeros. Computing30, 171–178 (1983).

    Google Scholar 

  8. Nourein, A. W. M.: An improvement on two iteration methods for simultaneous determination of the zeros of a polynomial. Intern. J. Computer Math.6, 241–252 (1977).

    Google Scholar 

  9. Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.

    Google Scholar 

  10. Petković, M. S.: Iterative methods for simultaneous inclusion of polynomial zeros. Berlin: Springer 1989.

    Google Scholar 

  11. Petković, M. S., Milovanović, G. V., Stefanović, L. V.: On some higher-order methods for the simultaneous approximation of multiple polynomial zeros. Comput. Math. Appl.12, 951–962 (1986).

    Google Scholar 

  12. Petković, M. S., Stefanović, L. V., Marjanović, Z. M.: A family of simultaneous zero finding methods. Intern. J. Computer Math (to appear).

  13. Sakurai, T., Tori, T., Sugiura, H.: A higher order iteration formula for simultaneous determination of zeros of a polynomial (submitted for publication).

  14. Schröder, E.: Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann.2, 317–365 (1870).

    Google Scholar 

  15. Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, New Jersey: Prentice Hall 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petković, M.S., Stefanović, L.V. & Marjanović, Z.M. On theR-order of some accelerated methods for the simultaneous finding of polynomial zeros. Computing 49, 349–361 (1993). https://doi.org/10.1007/BF02248695

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02248695

Key words

Navigation