Abstract
In the following we give an analysis of the local superconvergence properties of piecewise polynomial collocation methods and related continuous Runge-Kutta-type methods for Volterra integral equations with constant delay. We show in particular that (in contrast to delay differential equations) collocation at the Gauss points does not lead to higher-order convergence and thusm-stage Gauss-Runge-Kutta methods for delay Volterra equations do not possess the orderp=2m.
Zusammenfassung
Diese Arbeit befaßt sich mit Fragen der (lokalen) Superkonvergenz bei Kollokationsverfahren und stetigen impliziten Runge-Kutta-Methoden für Volterrasche Integralgleichungen mit retardiertem Argument. Es wird insbesondere gezeigt, daß (im Gegensatz zu retardierten Differentialgleichungen) Kollokation an den Gauss-Punkten nicht zu einer höheren Konvergenzordnung führt and daß deshalbm-stufige Gauss-Runge-Kutta-Methoden nicht die Ordnungp=2m besitzen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arndt, H., Baker, C. T. H.: Runge-Kutta formulae applied to Volterra functional equations with fixed delay. In: K. Strehmel (ed) Numerical treatment of differential equations: 4th Internat. Seminar NUMDIFF, Halle-Wittenberg, 1987, 19–30. Leipzig: B. G. Teubner Verlagsgesellschaft 1988 (Teubner-Texte zur Mathematik, 104).
Baker, C. T. H., Derakhshan, M. S.: R-K formulae applied to Volterra equations with delay, J. Comput. Appl. Math.29, 293–310 (1990).
Banaś, J.: An existence theorem for nonlinear Volterra integral equation with deviating argument. Rend. Circ. Mat. Palermo (2)35, 82–89 (1986).
Bellen, A.: One-step collocaton for delay differential equations. J. Comput. Appl. Math.10, 275–283 (1984).
Bellen, A., Jackiewicz, Z., Vermiglio, R., Zennaro, M.: Natural continuous extensions of Runge-Kutta methods for Volterra integral equations of the second kind and their applications. Math. Comp.52, 49–63 (1989).
Bownds, J. M., Cushing, J. M., Schutte, R.: Existence, uniqueness, and extendibility of solutions of Volterra integral systems with multiple, variable lags. Funkcial. Ekvac.19, 101–111 (1976).
Brunner, H.: Iterated collocation methods and their discretizations for Volterra integral equations. SIAM J. Numer. Anal.21, 1132–1145 (1984).
Brunner, H.: Collocation and continuous implicit Runge-Kutta methods for a class of delay Volterra integral equations. To appear in J. Comput. Appl. Math.
Brunner, H., Van der Houwen, P. J.: The numerical solution of Volterra equations. Amsterdam: North-Holland 1986 (CWI Monograph, 3).
Cahlon, B.: On the numerical stability of Volterra integral equations with delay argument. J. Comput. Appl. Math.33, 97–104 (1990).
Cahlon, B., Nachman, L. J.: Numerical solutions of Volterra integral equations with a solution dependent delay. J. Math. Anal. Appl.112, 541–562 (1985).
Esser, R.: Numerische Behandlung einer Volterraschen Integralgleichung. Computing19, 269–284 (1978).
Sugiyama, S.: On functional integral equations. Mem. School Sci. Engrg. Waseda Univ.41, 135–153 (1977).
Vâţâ, P.: Convergence theorems of some numerical approximation schemes for the class of non-linear integral equations. Bull. Univ. Galaţi Fasc. II Mat. Fiz. Mec. Teoret.1, 25–33 (1978).
Vermiglio, R.: A one-step subregion method for delay differential equations. Calcolo22, 429–455 (1985).
Vermiglio, R.: On the stability of Runge-Kutta methods for delay integral equations. Numer. Math.61, 561–577 (1992).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Baddour, N., Brunner, H. Continuous Volterra-Runge-Kutta methods for integral equations with pure delay. Computing 50, 213–227 (1993). https://doi.org/10.1007/BF02243812
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02243812