Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Continuous Volterra-Runge-Kutta methods for integral equations with pure delay

Stetige Volterra-Runge-Kutta-Methoden für Integralgleichungen mit Verzögerung

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In the following we give an analysis of the local superconvergence properties of piecewise polynomial collocation methods and related continuous Runge-Kutta-type methods for Volterra integral equations with constant delay. We show in particular that (in contrast to delay differential equations) collocation at the Gauss points does not lead to higher-order convergence and thusm-stage Gauss-Runge-Kutta methods for delay Volterra equations do not possess the orderp=2m.

Zusammenfassung

Diese Arbeit befaßt sich mit Fragen der (lokalen) Superkonvergenz bei Kollokationsverfahren und stetigen impliziten Runge-Kutta-Methoden für Volterrasche Integralgleichungen mit retardiertem Argument. Es wird insbesondere gezeigt, daß (im Gegensatz zu retardierten Differentialgleichungen) Kollokation an den Gauss-Punkten nicht zu einer höheren Konvergenzordnung führt and daß deshalbm-stufige Gauss-Runge-Kutta-Methoden nicht die Ordnungp=2m besitzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Arndt, H., Baker, C. T. H.: Runge-Kutta formulae applied to Volterra functional equations with fixed delay. In: K. Strehmel (ed) Numerical treatment of differential equations: 4th Internat. Seminar NUMDIFF, Halle-Wittenberg, 1987, 19–30. Leipzig: B. G. Teubner Verlagsgesellschaft 1988 (Teubner-Texte zur Mathematik, 104).

    Google Scholar 

  2. Baker, C. T. H., Derakhshan, M. S.: R-K formulae applied to Volterra equations with delay, J. Comput. Appl. Math.29, 293–310 (1990).

    Article  Google Scholar 

  3. Banaś, J.: An existence theorem for nonlinear Volterra integral equation with deviating argument. Rend. Circ. Mat. Palermo (2)35, 82–89 (1986).

    Google Scholar 

  4. Bellen, A.: One-step collocaton for delay differential equations. J. Comput. Appl. Math.10, 275–283 (1984).

    Article  Google Scholar 

  5. Bellen, A., Jackiewicz, Z., Vermiglio, R., Zennaro, M.: Natural continuous extensions of Runge-Kutta methods for Volterra integral equations of the second kind and their applications. Math. Comp.52, 49–63 (1989).

    Google Scholar 

  6. Bownds, J. M., Cushing, J. M., Schutte, R.: Existence, uniqueness, and extendibility of solutions of Volterra integral systems with multiple, variable lags. Funkcial. Ekvac.19, 101–111 (1976).

    Google Scholar 

  7. Brunner, H.: Iterated collocation methods and their discretizations for Volterra integral equations. SIAM J. Numer. Anal.21, 1132–1145 (1984).

    Article  Google Scholar 

  8. Brunner, H.: Collocation and continuous implicit Runge-Kutta methods for a class of delay Volterra integral equations. To appear in J. Comput. Appl. Math.

  9. Brunner, H., Van der Houwen, P. J.: The numerical solution of Volterra equations. Amsterdam: North-Holland 1986 (CWI Monograph, 3).

    Google Scholar 

  10. Cahlon, B.: On the numerical stability of Volterra integral equations with delay argument. J. Comput. Appl. Math.33, 97–104 (1990).

    Article  Google Scholar 

  11. Cahlon, B., Nachman, L. J.: Numerical solutions of Volterra integral equations with a solution dependent delay. J. Math. Anal. Appl.112, 541–562 (1985).

    Article  Google Scholar 

  12. Esser, R.: Numerische Behandlung einer Volterraschen Integralgleichung. Computing19, 269–284 (1978).

    Google Scholar 

  13. Sugiyama, S.: On functional integral equations. Mem. School Sci. Engrg. Waseda Univ.41, 135–153 (1977).

    Google Scholar 

  14. Vâţâ, P.: Convergence theorems of some numerical approximation schemes for the class of non-linear integral equations. Bull. Univ. Galaţi Fasc. II Mat. Fiz. Mec. Teoret.1, 25–33 (1978).

    Google Scholar 

  15. Vermiglio, R.: A one-step subregion method for delay differential equations. Calcolo22, 429–455 (1985).

    Google Scholar 

  16. Vermiglio, R.: On the stability of Runge-Kutta methods for delay integral equations. Numer. Math.61, 561–577 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baddour, N., Brunner, H. Continuous Volterra-Runge-Kutta methods for integral equations with pure delay. Computing 50, 213–227 (1993). https://doi.org/10.1007/BF02243812

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243812

AMS Subject Classification

Key words

Navigation