Abstract
In this paper we present and discuss a continuation method for solving certain fixed point problems in Hilbert spaces. The procedure allows to reduce progressively the residual until a desired level is reached. It is constructed combining a projected variant of Newton's method recently proposed and studied in [6] with the so-called principle of sufficiently weak increase of H. Schwetlick [9], [10]. Numerical examples illustrate the performance of the algorithm.
Zusammenfassung
Es wird eine Fortsetzungstechnik zur Lösung nichtlinearer Fixpunktprobleme in Hilberträumen vorgestellt und diskutiert. Sie benutzt projezierte Newton-Schritte zur Lösung der Teilprobleme. Numerische Beispiele illustrieren das Verhalten des Verfahrens.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Den Heijer, C.: The Numerical Solution of Nonlinear Operator Equations by Imbedding Methods. Mathematical Centre Tracts 107. Mathematisch Centrum, Amsterdam 1979.
Krasnosel'skii, M. A. and Zabreiko, P. P.: Geometrical Methods of Nonlinear Analysis. Berlin-Heidelberg-New York: Springer 1984.
Kubicek, M., Holodniok, M. and Marek, I.: Numerical solution of nonlinear equations by one-parameter imbedding methods. Numer. Funct. Anal. and Optimiz.3 (1984), 223–264.
Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Prentice Hall, Englewood Cliffs, N.J., 1983.
Moret, I. and Omari, P.: An iterative variant of the degenerate kernel method for solving Fredholm integral equations. Math. Nachr.141 (1989), in press.
Moret, I. and Omari, P.: A quasi-Newton method for solving fixed point problems in Hilbert spaces. Quaderni Matematici Univ. Trieste168 (1988), preprint.
Rheinboldt, W. C.: Methods for Solving Systems of Nonlinear Equations. SIAM, Philadelphia, 1974.
Schmidt, J. W.: Selected contributions to imbedding methods for finite dimensional problems, in Continuation Methods, H. Wacker ed., Academic Press, New York, 1978.
Schwetlick, H.: Ein neues Prinzip zur Konstruktion implementierbarer, global konvergenter Einbettungsalgorithmen. Beitr. Numer. Math.4 (1975), 215–228 and5 (1976), 201–206.
Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. Berlin: Deutscher Verlag der Wissenschaften, 1979.
Wacker, H.: Continuation Methods. New York: Academic Press 1978.
Weidmann, J.: Linear Operators in Hilbert Spaces. New York: Springer 1980.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Moret, I. A continuation procedure based on projected Newton steps. Computing 43, 13–25 (1989). https://doi.org/10.1007/BF02243802
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02243802