Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A continuation procedure based on projected Newton steps

Ein auf projizierten Newton-Schritten basierendes Fortsetzungsverfahren

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper we present and discuss a continuation method for solving certain fixed point problems in Hilbert spaces. The procedure allows to reduce progressively the residual until a desired level is reached. It is constructed combining a projected variant of Newton's method recently proposed and studied in [6] with the so-called principle of sufficiently weak increase of H. Schwetlick [9], [10]. Numerical examples illustrate the performance of the algorithm.

Zusammenfassung

Es wird eine Fortsetzungstechnik zur Lösung nichtlinearer Fixpunktprobleme in Hilberträumen vorgestellt und diskutiert. Sie benutzt projezierte Newton-Schritte zur Lösung der Teilprobleme. Numerische Beispiele illustrieren das Verhalten des Verfahrens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Den Heijer, C.: The Numerical Solution of Nonlinear Operator Equations by Imbedding Methods. Mathematical Centre Tracts 107. Mathematisch Centrum, Amsterdam 1979.

    Google Scholar 

  2. Krasnosel'skii, M. A. and Zabreiko, P. P.: Geometrical Methods of Nonlinear Analysis. Berlin-Heidelberg-New York: Springer 1984.

    Google Scholar 

  3. Kubicek, M., Holodniok, M. and Marek, I.: Numerical solution of nonlinear equations by one-parameter imbedding methods. Numer. Funct. Anal. and Optimiz.3 (1984), 223–264.

    Google Scholar 

  4. Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Prentice Hall, Englewood Cliffs, N.J., 1983.

    Google Scholar 

  5. Moret, I. and Omari, P.: An iterative variant of the degenerate kernel method for solving Fredholm integral equations. Math. Nachr.141 (1989), in press.

  6. Moret, I. and Omari, P.: A quasi-Newton method for solving fixed point problems in Hilbert spaces. Quaderni Matematici Univ. Trieste168 (1988), preprint.

  7. Rheinboldt, W. C.: Methods for Solving Systems of Nonlinear Equations. SIAM, Philadelphia, 1974.

    Google Scholar 

  8. Schmidt, J. W.: Selected contributions to imbedding methods for finite dimensional problems, in Continuation Methods, H. Wacker ed., Academic Press, New York, 1978.

    Google Scholar 

  9. Schwetlick, H.: Ein neues Prinzip zur Konstruktion implementierbarer, global konvergenter Einbettungsalgorithmen. Beitr. Numer. Math.4 (1975), 215–228 and5 (1976), 201–206.

    Google Scholar 

  10. Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. Berlin: Deutscher Verlag der Wissenschaften, 1979.

    Google Scholar 

  11. Wacker, H.: Continuation Methods. New York: Academic Press 1978.

    Google Scholar 

  12. Weidmann, J.: Linear Operators in Hilbert Spaces. New York: Springer 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moret, I. A continuation procedure based on projected Newton steps. Computing 43, 13–25 (1989). https://doi.org/10.1007/BF02243802

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243802

AMS Subject Classification

key words

Navigation