Abstract
In recent publications about data compression, arithmetic codes are often suggested as the state of the art, rather than the more popular Huffman codes. While it is true that Huffman codes are not optimal in all situations, we show that the advantage of arithmetic codes in compression performance is often negligible. Referring also to other criteria, we conclude that for many applications, Huffman codes should still remain a competitive choice.
Zusammenfassung
In neueren Publikationen über Datenkompression werden oft arithmetische Codes anstatt der gebräuchlicheren Huffman-Codes als Stand der Wissenschaft vorgeschlagen. Obwohl Huffman-Codes nicht unter allen Umständen optimal sind, zeigen wir, daß der Vorteil arithmetischer Codes zur Kompression häufig vernachlässigbar klein ist. Unter Berücksichtigung auch anderer Kriterien schließen wir, daß für viele Anwendungen Huffman-Codes auch weiterhin eine gute Alternative darstellen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abramson, N.: Information theory and coding. New York: McGraw-Hill 1965.
Bauer, F. L., Goos, G.: Informatik. Eine einführende Übersicht, Erster Teil. Berlin Heidelberg New York: Springer 1973.
Bell, T. C., Moffat, A., Nevill, C. G., Witten, I. H., Zobel, J.: Data compression in full text retrieval systems (to appear in J. ASIS)
Bookstein, A., Klein, S. T., Compression, information theory and grammars: a unified approach. ACM Trans. Inf. Systems8, 27–49 (1990).
Bookstein, A., Klein, S. T.: Models of bitmap generation: a systematic approach to bitmap compression. Inf. Process. Management28, 735–748 (1992).
Bookstein, A., Klein, S. T., Ziff, D. A.: A systematic approach to compressing a full text retrieval system. Inf. Process. Management28, 795–806 (1992).
Bookstein, A., Klein, S. T., Raita, T., Ravichandra, Rao, I. K., Patil, M. D.: Can random fluctuations be exploited in data compression. Proc. DCC'93, pp. 70–78 (1993).
Capocelli, R. M., Giancarlo, R., Taneja, I. J.: Bounds on the redundancy of Huffman codes, IEEE Trans. on Inf. Th. IT-32, 854–857 (1986).
Capocelli, R. M., DeSantis, A.: New bounds on the redundancy of Huffman codes. IEEE Trans. on Inf. Th. IT-37, 1095–1104 (1991).
Chevion, D., Karnin, E. D., Walach, A. C.: High efficiency, multiplication free approximation of arithmetic coding. Proc. DCC'91, 43–52 (1991).
Choueka, Y., Klein, S. T., Perl, Y.: Efficient variants of Huffman codes in high level languages. Proc. 8-th ACM-SIGIR Conf, pp. 122–130. Montreal: ACM (Association for Computing Machinery) 1985.
Elias, P., Universal codeword sets and representation of the integers. IEEE Trans. on Inf. Th., IT-12, 194–203 (1975).
Ferguson, T. J., Rabinowitz, J. H.: Self-synchronizing Huffman codes. IEEE Trans. on Inf. Th. IT-30, 687–693 (1984).
Fraenkel, A. S.: All about the Responsa Retrieval Project you always wanted to know but were afraid to ask. Expanded Summary. Jurimetrics J.16, 149–156 (1976).
Fraenkel, A. S., Klein, S. T.: Novel compression of sparse bit-strings. Combinatorial algorithms on words. NATO ASI Series VolF12, pp. 169–183. Berlin Heidelberg New York Tokyo: Springer 1985.
Fraenkel, A. S., Klein, S. T.: Bounding the depth of search trees. Comput J (to appear).
Fraenkel, A. S., Klein, S. T.: Bidirectional Huffman coding. Comput J33, 296–307 (1990).
Gaines, H. F.: Cryptanalysis. A study of ciphers and their solution. New York: Dover Publ. 1956.
Gallager, R. G.: Variations on a theme by Huffman. IEEE Trans. on Inf. Th., IT-24, 668–674 (1978).
Gilbert, E. N.: Codes based on inaccurate source probabilities. IEEE Trans. on Inf. Th. IT-17, 304–314 (1971).
Gilbert, E. N., Moore, E. F.: Variable-length binary encodings. Bell Syst Tech J38, 933–968 (1959).
Heaps, H. S.: Information retrieval, computational and theoretical aspects. New York: Academic Press 1978.
Herdan, G.: The advanced theory of language as choice and chance. Berlin Heidelberg New York: Springer 1966.
Hirschberg, D. S., Lelewer, D. A.: Efficient decoding of prefix codes. Comm. ACM33, 449–459 (1990).
Howard, P. G., Vitter, J. S.: Practical implementations of arithmetic coding. Tech. Rep. CS-92-18, Dept. of CS, Brown University 1992.
Huffman, D.: A method for the construction of minimum redundancy codes. Proc. of the IRE40, 1098–1101 (1952).
Jakobsson, M.: Huffman coding in bit-vector compression. Inf. Proc. Lett7, 304–307 (1978).
Klein, S. T., Bookstein, A., Deerwester, S.: Storing text retrieval systems on CD-ROM: compression and encryption considerations. ACM Trans. on Inf. Systems,7, 230–245 (1989).
Knuth, D. E.: The Art of computer programming, Vol. I: fundamental algorithms. Reading, Mass.: Addison-Wesley 1973.
Knuth, D. E.: Dynamic Huffman coding. J. Algorithms6, 163–180 (1965).
Larmore, L. L., Hirschberg, D. S.: A fast algorithm for optimal length limited Huffman codes. Journal ACM37, 464–473 (1990).
Lelewer, D. A., Hirschberg, D. S.: Data compression. ACM Comput. Surveys19, 261–296 (1987).
Moffat, A., Sharman, N., Witten, I. H., Bell, T. C.: An empirical evaluation of coding methods for multi-symbol alphabets. Proc DCC'93, 108–117 (1993).
Moffat, A., Zobel, J.: Coding for compression in full-text retrieval systems. Proc. DCC'92, 72–81 (1992).
Nelson, M.: The data compression book. San Mateo: M & T Publ. 1991.
Pesonen, J.: Word inflexions and their letter and syllable structure in Finnish newspaper text. Research Rep. 6/1971, Dept. of Special Education, University of Jyräskylä, Finland (in Finnish, with English summary).
Rissanen, J. J.: Generalized Kraft inequality and arithmetic coding. IBM J. Res. Dev.20, 198–203 (1976).
Rissanen, J. J., Langdon, G. G.: Arithmetic coding. IBM J. Res. Dev.23, 149–162 (1979).
Schwartz, E. S., Kallik, B.: Generating a canonical prefix encoding. Comm. ACM7, 166–169 (1964).
Teuhola, J., Raita, T.: Piecewise arithmetic coding. Proc. DCC'91, 33–42 (1991).
Van Leeuwen, J.: On the construction of Huffman trees. Proc. 3rd ICALP Conference, pp. 382–410. Edinburgh: Edinburgh University Press 1976.
Vitter, J. S.: Design and analysis of dynamic Huffman coees. Journal ACM34, 825–845 (1987).
Witten, I. H., Neal, R. M., Cleary, J. G.: Arithmetic coding for data compression. Comm. ACM30, 520–540 (1987).
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. on Inf. Th.IT-23, 337–343 (1977).
Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Th.IT-24, 530–536 (1978).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bookstein, A., Klein, S.T. Is Huffman coding dead?. Computing 50, 279–296 (1993). https://doi.org/10.1007/BF02243872
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02243872