Abstract
We give a local convergence analysis of difference Newton-like methods for solving the nonlinear equationF(x)=0, without assuming Lipschitz continuity of the derivativeF′. The results are obtained by regarding difference Newton-like methods as inexact Newton methods.
Zusammenfassung
Wir befassen uns mit einer Konvergenzanalyse für Newton-ähnliche Verfahren vom Differenztyp zur Lösung der nichtlinearen GleichungF(x)=0, ohne die Voraussetzung, daß die AbleitungF′ Lipschitz-stetig ist. Die Resultate entstehen daraus, daß wir Newton-ähnliche Verfahren vom Differenztyp als approximäre (inexact) Newton-Verfahren ansehen.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bus, J. C. P.: Numerical solution of systems of nonlinear equations. (Mathematical Centre Tract 122.) Amsterdam: Mathematisch Centrum 1980.
Dembo, R. S., Eisenstat, S. C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal.19, 400–408 (1982).
Dennis, J. E., Moré, J. J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput.28, 549–560 (1974).
Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton's method and extensions to related methods. SIAM J. Numer. Anal16, 1–10 (1979).
Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H.: Computing forward-difference intervals for numerical optimization. SIAM J. Sci. Stat. Comp.4, 310–321 (1983).
Griewank, A., Toint, P.: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math.39, 429–448 (1982).
Jankowska, J.: Theory of multivariate secant methods. SIAM J. Numer. Anal.16, 547–562 (1979).
Mönch, W.: Secant methods for sparse systems of nonlinear equations with a special structure. Computing30, 212–223 (1983).
Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.
Rokne, J.: Newton's method under mild differentiability conditions with error analysis. Numer. Math.18, 401–412 (1972).
Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. München: Oldenbourg 1979.
Ypma, T. J.: Local convergence of difference Newton-like methods. Math. Comput.41, 527–536 (1983).
Ypma, T. J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. (to appear, 1984).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Ypma, T.J. Difference Newton-like methods under weak continuity conditions. Computing 33, 51–64 (1984). https://doi.org/10.1007/BF02243075
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02243075