Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Difference Newton-like methods under weak continuity conditions

Newton-ähnliche Verfahren vom Differenztyp unter schwachen Stetigkeitsvoraussetzungen

  • Contributed Papers
  • Published:
Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We give a local convergence analysis of difference Newton-like methods for solving the nonlinear equationF(x)=0, without assuming Lipschitz continuity of the derivativeF′. The results are obtained by regarding difference Newton-like methods as inexact Newton methods.

Zusammenfassung

Wir befassen uns mit einer Konvergenzanalyse für Newton-ähnliche Verfahren vom Differenztyp zur Lösung der nichtlinearen GleichungF(x)=0, ohne die Voraussetzung, daß die AbleitungF′ Lipschitz-stetig ist. Die Resultate entstehen daraus, daß wir Newton-ähnliche Verfahren vom Differenztyp als approximäre (inexact) Newton-Verfahren ansehen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bus, J. C. P.: Numerical solution of systems of nonlinear equations. (Mathematical Centre Tract 122.) Amsterdam: Mathematisch Centrum 1980.

    Google Scholar 

  2. Dembo, R. S., Eisenstat, S. C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal.19, 400–408 (1982).

    Google Scholar 

  3. Dennis, J. E., Moré, J. J.: A characterization of superlinear convergence and its application to quasi-Newton methods. Math. Comput.28, 549–560 (1974).

    Google Scholar 

  4. Deuflhard, P., Heindl, G.: Affine invariant convergence theorems for Newton's method and extensions to related methods. SIAM J. Numer. Anal16, 1–10 (1979).

    Google Scholar 

  5. Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H.: Computing forward-difference intervals for numerical optimization. SIAM J. Sci. Stat. Comp.4, 310–321 (1983).

    Google Scholar 

  6. Griewank, A., Toint, P.: Local convergence analysis for partitioned quasi-Newton updates. Numer. Math.39, 429–448 (1982).

    Google Scholar 

  7. Jankowska, J.: Theory of multivariate secant methods. SIAM J. Numer. Anal.16, 547–562 (1979).

    Google Scholar 

  8. Mönch, W.: Secant methods for sparse systems of nonlinear equations with a special structure. Computing30, 212–223 (1983).

    Google Scholar 

  9. Ortega, J. M., Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables. New York: Academic Press 1970.

    Google Scholar 

  10. Rokne, J.: Newton's method under mild differentiability conditions with error analysis. Numer. Math.18, 401–412 (1972).

    Google Scholar 

  11. Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. München: Oldenbourg 1979.

    Google Scholar 

  12. Ypma, T. J.: Local convergence of difference Newton-like methods. Math. Comput.41, 527–536 (1983).

    Google Scholar 

  13. Ypma, T. J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. (to appear, 1984).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ypma, T.J. Difference Newton-like methods under weak continuity conditions. Computing 33, 51–64 (1984). https://doi.org/10.1007/BF02243075

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02243075

AMS Subject Classification

Key words

Navigation