Abstract
An important result in the theory of complexity classes is the naming theorem of E. M. McCreight, which states that the system of complexity classes can be renamed uniformly by a measured set of names. Our investigation of honesty classes shows that for these classes the analogous assertion is false. No measured transformation of programs renames correctly all honesty classes.
Zusammenfassung
Ein wichtiges Ergebnis der Komplexitätstheorie ist der Umbenennungssatz von E. M. McCreight, der besagt, daß es einen Algorithmus σ gibt, der alle Namen ϕi des Systems der Komplexitätsklassen in neue Namen ϕσ(i) überführt, derart, daß die neuen Namen die Schrittmaßbedingung „λi,n,m[ϕσ(i)(n)≦m] entscheidbar” erfüllen. Unsere Untersuchung der „gutartigen Funktionenklassen” zeigt, daß ein entsprechender Umbenennungsalgorithmus für diese Klassen nicht existiert.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bass, L.: Hierarchies based on computational complexity and irregularities of class determining measured sets. Doctoral thesis, Purdue University, 1970.
Bass, L., Young, P.: Ordinal hierarchies and naming complexity classes. J. ACM20, 668–686 (1973).
Blum, M.: A machine independent theory of the complexity of recursive functions. J. ACM14, 322–336 (1967).
Borodin, A.: Complexity classes of recursive functions and the existence of complexity gaps. J. ACM19, 158–174 (1972).
Constable, R. L.: The operator gap. J. ACM19, 175–183 (1972).
van Emde Boas, P.: A comparison of the properties of complexity classes and honesty classes, in: Automata, Languages and Programming, Proc. Symp. Inst. Rech. Informatique Automatique (IRIA), p. 391–396. Rocquencourt: North Holl. Publ. Comp. 1973.
van Emde Boas, P.: Abstract resource-bound classes. Doctoral thesis, Univ. of Amsterdam, 1974.
McCreight, E.: Classes of computable functions defined by bounds on computation. Doctoral thesis, Carnegie Mellon University, 1969. (See also the joint paper with A. Meyer under the same title presented at the First ACM Symp. on the Theory of Computing, 1969, p. 79–88.)
Meyer, A., Moll, R.: Honest bounds for complexity classes of recursive functions. Proj. MAC, Technical Report, April 1972, MIT, Cambridge (Mass.).
Moll, R., Meyer, A.: Honest bouds for complexity classes of recursive functions. J.S.L.39, 127–138 (1974).
Moll, R.: Complexity classes of recursive functions. Report MAC TR 110, June 1973, MIT Cambridge (Mass.), doctoral thesis.
Rogers, H., Jr.: Gödel numbering of partial recursive functions. J.S.L.23, 331–341 (1958).
Author information
Authors and Affiliations
Additional information
This paper is registered as Mathematical Centre Report ZW 18/73.
Rights and permissions
About this article
Cite this article
van Emde Boas, P. The non-renameability of honesty classes. Computing 14, 183–193 (1975). https://doi.org/10.1007/BF02242317
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF02242317