Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Convergence of method of lines approximations to partial differential equations

Konvergenz von auf der Linienmethode basierenden Approximationen partieller Differentialgleichungen

  • Contrinbuted Papers
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. Our main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schrödinger equation are used for illustrating the ideas.

Zusammenfassung

Viele numerische Verfahren für Anfangswertprobleme für partielle Differentialgleichungen kann man als Linienmethoden interpretieren. Diese Arbeit behandelt solche Verfahren vom Einschriftt-Typ. Unser Ziel ist die Behandlung von Konvergenzfragen, insbesondere für nichtlineare Probleme. Unsere Hilfsmittel zum Nachweis der Stabilität entnehmen wir der stark entwickelten Theorie für nichtlineare steife gewöhnliche Differentialgleichungen. Wichtig sind hierbei die logarithmische Matrixnorm und der C-Stabilitätsbegriff. Eine nichtlineare parabolische Gleichung und die kubische Schrödingergleichung werden verwendet, um die Ideen zu illustrieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Axelsson, O.: Error estimates over infinite intervals of some discretizations of evolution equations. Technical Report, Catholic University of Nijmegen, 1983 (to appear in BIT).

  2. Burrage, K., Butcher, J. C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal.16, 46–57 (1979).

    Google Scholar 

  3. Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Royal Inst. Techn., No 130, Stockholm, 1959.

  4. Dekker, K., Verwer, J. G.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. Amsterdam-New York-Oxford: North-Holland 1984.

    Google Scholar 

  5. Frank, R., Schneid, J., Ueberhuber, C. W.: The concept of B-convergence. SIAM J. Numer. Anal.18, 753–780 (1981).

    Google Scholar 

  6. Griffiths, D. F., Mitchell, A. R., Morris, J. LI: A numerical study of the nonlinear Schrödinger equations. Comp. Meth. Appl. Mech. Engn.45, 177–215 (1984).

    Google Scholar 

  7. Kreiss, H. O.: Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. BIT2, 153–181 (1962).

    Google Scholar 

  8. Richtmyer, R. D., Morton, K. W.: Difference Methods for Initial Value Problems. New York: Interscience. 1967.

    Google Scholar 

  9. Sanz-Serna, J. M.: Convergent approximations to PDEs and contractivity of methods for stiff systems of ODEs. In: Actas del VI CEDYA, Jaca, 1983, pp. 488–493 (this paper is a highly condensed version of a report which is available on request).

  10. Sanz-Serna, J. M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. of Comput.43, 21–24 (1984).

    Google Scholar 

  11. Verwer, J. G., Dekker, K.: Step-by-step stability in the numerical solution of partial differential equations. Report NW 161/83, Mathematical Centre, Amsterdam, 1983.

    Google Scholar 

  12. Verwer, J. G.: Contractivity of locally one-dimensional splitting methods. Numer. Math.44, 247–259 (1984).

    Google Scholar 

  13. Wirz, H. J.: On iterative solution methods for systems of partial differential equations. Lecture Notes in Mathematics, Vol. 679, pp. 151–163. Berlin-Heidelberg-New York: Springer 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verwer, J.G., Sanz-Serna, J.M. Convergence of method of lines approximations to partial differential equations. Computing 33, 297–313 (1984). https://doi.org/10.1007/BF02242274

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02242274

1980 Mathematics Subject Classifications

Key words and phrases

Navigation