Abstract
Many existing numerical schemes for evolutionary problems in partial differential equations (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence of one-step MOL schemes. Our main purpose is to set up a general framework for a convergence analysis applicable to nonlinear problems. The stability materials for this framework are taken from the field of nonlinear stiff ODEs. In this connection, important concepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the cubic Schrödinger equation are used for illustrating the ideas.
Zusammenfassung
Viele numerische Verfahren für Anfangswertprobleme für partielle Differentialgleichungen kann man als Linienmethoden interpretieren. Diese Arbeit behandelt solche Verfahren vom Einschriftt-Typ. Unser Ziel ist die Behandlung von Konvergenzfragen, insbesondere für nichtlineare Probleme. Unsere Hilfsmittel zum Nachweis der Stabilität entnehmen wir der stark entwickelten Theorie für nichtlineare steife gewöhnliche Differentialgleichungen. Wichtig sind hierbei die logarithmische Matrixnorm und der C-Stabilitätsbegriff. Eine nichtlineare parabolische Gleichung und die kubische Schrödingergleichung werden verwendet, um die Ideen zu illustrieren.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Axelsson, O.: Error estimates over infinite intervals of some discretizations of evolution equations. Technical Report, Catholic University of Nijmegen, 1983 (to appear in BIT).
Burrage, K., Butcher, J. C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer. Anal.16, 46–57 (1979).
Dahlquist, G.: Stability and error bounds in the numerical integration of ordinary differential equations. Trans. Royal Inst. Techn., No 130, Stockholm, 1959.
Dekker, K., Verwer, J. G.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential Equations. Amsterdam-New York-Oxford: North-Holland 1984.
Frank, R., Schneid, J., Ueberhuber, C. W.: The concept of B-convergence. SIAM J. Numer. Anal.18, 753–780 (1981).
Griffiths, D. F., Mitchell, A. R., Morris, J. LI: A numerical study of the nonlinear Schrödinger equations. Comp. Meth. Appl. Mech. Engn.45, 177–215 (1984).
Kreiss, H. O.: Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren. BIT2, 153–181 (1962).
Richtmyer, R. D., Morton, K. W.: Difference Methods for Initial Value Problems. New York: Interscience. 1967.
Sanz-Serna, J. M.: Convergent approximations to PDEs and contractivity of methods for stiff systems of ODEs. In: Actas del VI CEDYA, Jaca, 1983, pp. 488–493 (this paper is a highly condensed version of a report which is available on request).
Sanz-Serna, J. M.: Methods for the numerical solution of the nonlinear Schrödinger equation. Math. of Comput.43, 21–24 (1984).
Verwer, J. G., Dekker, K.: Step-by-step stability in the numerical solution of partial differential equations. Report NW 161/83, Mathematical Centre, Amsterdam, 1983.
Verwer, J. G.: Contractivity of locally one-dimensional splitting methods. Numer. Math.44, 247–259 (1984).
Wirz, H. J.: On iterative solution methods for systems of partial differential equations. Lecture Notes in Mathematics, Vol. 679, pp. 151–163. Berlin-Heidelberg-New York: Springer 1978.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Verwer, J.G., Sanz-Serna, J.M. Convergence of method of lines approximations to partial differential equations. Computing 33, 297–313 (1984). https://doi.org/10.1007/BF02242274
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02242274