Abstract
The determination of a monotone nonincreasing and convex response function arising in reservoir mechanics is investigated from the computational point of view. Regularization by linear inequalities yields the means for overcoming the ill-posedness of the considered convolution type integral equation. In order to find efficient numerical solutions and adapted approach for solving the associated constrained least squares problems is developed. Some simulation studies complete the paper.
Zusammenfassung
In der Arbeit wird aus numerischer Sicht die Bestimmung einer monoton nichtwachsenden konvexen Responsefunktion untersucht, die in der Reservoirmechanik Anwendung findet. Regularisierung durch lineare Ungleichungen erlaubt die Überwindung der Nichtkorrektheit der betrachteten Faltungs-integralgleichung. Im Sinne effizienter numerischer Lösungen wird ein angepaßter Zugang zur Lösung der entsprechenden restringierten Kleinste-Quadrate-Probleme entwickelt. Einige Simulationsstudien runden die Arbeit ab.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Berg, L.: Operatorenrechnung, Bd. 2, p. 138. Berlin: Verlag der Wissenschaften 1974.
Björck, A.: Least Squares Problems. Working Paper, Dept. of Mathematics, Linköping University. Linköping (Sweden) 1988.
Coasts, K. H. et al.: Determination of aquifer influence functions from field data. J. Petroleum Tech.16 (1964), p. 1417–24.
Eckhardt, U.: Regularization of incorrectly posed problems by linear inequalities and quadratic programming. In: Vogel, A. (Ed.): Model Optimization in Exploration Geophysics, p. 39–51. Braunschweig/Wiesbaden: Vieweg 1987.
Hofmann, B.: Regularization for Applied Inverse and Ill-Posed Problems, Teubner-Texte zur Mathematik, Bd. 85. Leipzig: Teubner 1986.
Hofmann, B.: On the analysis of a particular Volterra-Stieltjes convolution integral equation. Z. Anal. Anw.7 (1988), p. 247–57.
Lawson, C. L. and R. J. Hanson: Solving Least Squares Problems. Englewood Cliffs, N.J.: Prentice-Hall 1974.
Linz, P.: Uncertainty in the solution of linear operator equations. BIT24 (1984), p. 92–101.
Linz, P.: Analytical and Numerical Methods of Volterra Equations. Philadelphia: SIAM 1985.
Rutman, R. S.: Use of exogenous information for the regularization of the Fredholm inverse problem. In: Vogel, A. (Ed.): Model Optimization in Exploration Geophysics2, p. 3–19. Braunschweig/Wiesbaden: Vieweg 1988.
Tikhonov, A. N. et al.: Regularizing Algorithms and Apriori Information (in Russian). Moscow: Nauka 1983.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Hofmann, B., Hausding, R. & Wolke, R. Regularization of a Volterra integral equation by linear inequalities. Computing 43, 361–375 (1990). https://doi.org/10.1007/BF02241655
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02241655