Abstract
In typical stochastic simulations, randomness is produced by generating a sequence of independent uniform variates (usually real-valued between 0 and 1, or integer-valued in some interval) and transforming them in an appropriate way. In this paper, we examine practical ways of generating (deterministic approximations to) such uniform variates on a computer. We compare them in terms of ease of implementation, efficiency, theoretical support, and statistical robustness. We look in particular at several classes of generators, such as linear congruential, multiple recursive, digital multistep, Tausworthe, lagged-Fibonacci, generalized feedback shift register, matrix, linear congruential over fields of formal series, and combined generators, and show how all of them can be analyzed in terms of their lattice structure. We also mention other classes of generators, like non-linear generators, discuss other kinds of theoretical and empirical statistical tests, and give a bibliographic survey of recent papers on the subject.
Similar content being viewed by others
References
L. Afflerbach, The sub-lattice structure of linear congruential random number generators, Manuscripta Math. 55(1986)455–465.
L. Afflerbach and H. Grothe, Calculation of Minkowski-reduced lattice bases, Computing 35(1985)269–276.
L. Afflerbach and H. Grothe, The lattice structure of pseudo-random vectors generated by matrix generators, J. Comp. Appl. Math. 23(1988)127–131.
L. Afflerbach and R. Weilbächer, The exact determination of rectangle discrepancy for linear congruential pseudorandom numbers, Math. Comp. 53(1989)343–354.
D.L. André, G.L. Mullen and H. Niederreiter, Figures of merit for digital multistep pseudorandom numbers, Math. Comp. 54(1990)737–748.
S.L. Anderson, Random number generators on vector supercomputers and other advanced architectures, SIAM Rev. 32(1990)221–251.
A.C. Atkinson, Tests of pseudo-random numbers, Appl. Statist. 29(1980)164–171.
L. Blum, M. Blum and M. Shub, A simple unpredictable pseudo-random number generator, SIAM J. Comp. 15(1986)364–383.
J. Boyar, Inferring sequences produced by a linear congruential generator missing low-order bits, J. Cryptol. 1(1989)177–184.
P. Bratley, B.L. Fox and L.E. Schrage,A Guide to Simulation, 2nd ed. (Springer, New York, 1987).
M. Brown and H. Solomon, On combining pseudorandom number generators, Ann. Statist. 1(1979)691–695.
B.J. Collings, Compound random number generators, J. Amer. Statist. Assoc. 82(1987)525–527.
A. Compagner, The hierarchy of correlations in random binary sequences, J. Statist. Phys. 63(1991)883–896.
R. Couture, P. L'Ecuyer and S. Tezuka, On the distribution ofk-dimensional vectors for simple and combined Tausworthe sequences, Math. Comp. 60(1993)511–516 and 749–761.
R. Couture and P. L'Ecuyer, On the lattice structure of certain linear congruential sequences related to AWC/SWB generators, Math. Comp. 62(1994)798–808.
J. Dagpunar,Principles of Random Variate Generation (Oxford University Press, 1988).
J.W. Dalle Molle, M.J. Hinich and D.J. Morrice, Higher-order cumulant spectral based statistical tests of pseudo random variate generators,Proc. Winter Simulation Conf. (1992) pp. 618–625.
A. De Matteis and S. Pagnutti, Parellelization of random number generators and long-range correlations, Numer. Math. 53(1988)595–608.
L. Devroye,Non-Uniform Random Variate Generation (Springer, New York, 1986).
E.J. Dudewicz and T.G. Ralley,The Handbook of Random Number Generation and Testing with TESTRAND Computer Code (American Sciences Press, Columbus, Ohio, 1981).
M.J. Durst, Using linear congruential generators for parallel random number generation,Proc. Winter Simulation Conf. (1989) pp. 462–466.
J. Eichenauer and J. Lehn, A nonlinear congruential pseudorandom number generator, Statist. Hefte 27(1986)315–326.
J. Eichenauer and J. Lehn, On the structure of quadratic congruential sequences, Manuscripta Math. 58(1987)129–140.
J. Eichenauer, H. Grothe, J. Lehn and A. Topuzoğlu, A multiple recursive nonlinear congruential pseudorandom number generator, Manuscripta Math. 59(1987)331–346.
J. Eichenauer, J. Lehn and A. Topuzoğlu, A nonlinear congruential pseudorandom number generator with power of two modulus, Math. Comp. 51(1988)757–759.
J. Eichenauer-Herrmann, A remark on long-range correlations in multiplicative congruential pseudo random number generators, Numer. Math. 56(1989)609–611.
J. Eichenauer-Herrmann, Statistical independence of a new class of inversive congruential pseudorandom numbers, Math. Comp. 60(1993)375–384.
J. Eichenauer-Herrmann, Inversive congruential pseudorandom numbers: A tutorial, Int. Statist. Rev. 60(1992)167–176.
J. Eichenauer-Herrmann and H. Grothe, A new inversive congruential pseudorandom number generator with power of two modulus, ACM Trans. Modeling Comp. Simul. 2(1992)1–11.
J. Eichenauer-Herrmann, H. Grothe and J. Lehn, On the period length of pseudorandom vector sequences generated by matrix generators, Math. Comp. 52(1989)145–148.
E.D. Erdmann, Empirical tests of binary keystreams, Master's Thesis, Department of Mathematics, Royal Holloway and Bedford New College, University of London (1992).
A.M. Ferrenberg, D.P. Landau and Y.J. Wong, Monte Carlo simulations: Hidden errors from “good” random number generators, Phys. Rev. Lett. 69(1992)3382–3384.
G.S. Fishman and L.S. Moore III, An exhaustive analysis of multiplicative congruential random number generators with modulus 231 - 1, SIAM J. Statist. Comp. 7(1986)24–45.
G.S. Fishman, Multiplicative congruential random number generators with modulus 2β: An exhaustive analysis for β = 32 and a partial analysis for β = 48, Math. Comp. 54(1990)331–344.
M. Fushimi, An equivalence relation between Tausworthe and GFSR sequences and applications, Appl. Math. Lett. 2(1989)135–137.
M. Fushimi and S. Tezuka, Thek-distribution of generalized feedback shift register pseudorandom numbers, Commun. ACM 26(1983)516–523.
H. Grothe, Matrix generators for pseudo-random vector generation, Statist. Hefte 28(1987)233–238.
H. Grothe, Matrixgeneratoren zur Erzeugung gleichverteilter Pseudozufallsvektoren (in German), Dissertation (thesis), Tech. Hochschule Darmstadt, Germany (1988).
J.R. Heringa, H.W.J. Blöte and A. Compagner, New primitive trinomials of Mersenne-exponent degrees for random-number generation, Int. J. Mod. Phys. C3(1992)561–564.
D.C. Hoaglin and M.L. King, A remark on algorithm AS 98: The spectral test for the evaluation of congruential pseudo-random generators, Appl. Statist. 27(1978)375–377.
F. James, A review of pseudorandom number generators, Comp. Phys. Commun. 60(1990)329–344.
R. Kannan, A.K. Lenstra and L. Lovász, Polynomial factorization and nonrandomness of bits of algebraic and some transcendental numbers, Math. Comp. 50(1988)235–250.
Z.A. Karian and E.J. Dudewicz,Modern Statistical, Systems, and GPSS Simulation: The First Course (Computer Science Press, Freeman, New York, 1991).
D.E. Knuth,The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, 2nd ed. (Addison-Wesley, 1981).
H. Krawczyk, How to predict congruential generators, in: Lecture Notes in Computer Science 435,Advances in Cryptology: Proceedings of Crypto '89, ed. G. Brassard (Springer, Berlin, 1989) pp. 138–153.
Y. Kurita and M. Matsumoto, Primitivet-nomials (t = 3,5) overGF(2) whose degree is a Mersenne exponent ≤ 44497, Math. Comp. 56(1991)817–821.
A.M. Law and W.D. Kelton,Simulation Modeling and Analysis, 2nd ed. (McGraw-Hill, 1991).
P. L'Ecuyer, Efficient and portable combined random number generators, Commun. ACM 31(1988)742–749 and 774. See also the correspondence in the same journal, 32(1989)1019–1024.
P. L'Ecuyer, Random numbers for simulation, Commun. ACM 33, no. 10 (1990) 85–97.
P. L'Ecuyer, Testing random number generators,Proc. Winter Simulation Conf. (1992) pp. 305–313.
P. L'Ecuyer, F. Blouin and R. Couture, A search for good multiple recursive random number generators, ACM Trans. Modeling Comp. Simul. 3(1993)87–98.
P. L'Ecuyer and S. Côté, Implementing a random number package with splitting facilities, ACM Trans. Math. Software 17(1991)98–111.
P. L'Ecuyer and R. Couture, An implementation of the lattice and spectral tests for linear congruential and multiple recursive generators, submitted.
P. L'Ecuyer and R. Proulx, About polynomial-time “unpredictable” generators,Proc. Winter Simulation Conf. (1989) pp. 467–476.
P. L'Ecuyer and S. Tezuka, Structural properties for two classes of combined random number generators, Math. Comp. 57(1991)735–746.
A.K. Lenstra, Factoring multivariate polynomials over finite fields, J. Comp. Syst. Sci. 30(1985)235–248.
T.G. Lewis and W.H. Payne, Generalized feedback shift register pseudorandom number algorithm, J. ACM. 20(1973)456–468.
R. Lidl and H. Niederreiter,Introduction to Finite Fields and Their Applications (Cambridge University Press, Cambridge, 1986).
J.H. Lindholm, Analysis of the pseudo-random properties of subsequences of longm-sequences, IEEE Trans. Inf. Theory IT-14(1968)569–576.
G. Marsaglia, A current view of random number generation, in:Computer Science and Statistics, Proc. 16th Symp. on the Interface (Elsevier Science/North-Holland, 1985) pp. 3–10.
G. Marsaglia and L.-H. Tsay, Matrices and the structure of random number sequences, Lin. Alg. Appl. 67(1985)147–156.
G. Marsaglia and A. Zaman, A new class of random number generators, Ann. Appl. Prob. 1(1991)462–480.
G. Marsaglia, B. Narasimhan and A. Zaman, A random number generator for PCs, Comp. Phys. Commun. 60(1990)345–349.
G. Marsaglia, A. Zaman and W.W. Tsang, Towards a universal random number generator, Statist. Prob. Lett. 8(1990)35–39.
M. Matsumoto and Y. Kurita, The fixed point of anm-sequence and local non-randomness, Technical Report 88-027, Department of Information Science, University of Tokyo (1988).
M. Matsumoto and Y. Kurita, Twisted GFSR generators, ACM Trans. Modeling Comp. Simul. 2(1992)179–194.
M. Matsumoto and Y. Kurita, Twisted GFSR generators II, ACM Trans. Modeling Comp. Simul., to appear.
U.M. Maurer, A universal statistical test for random bit generators, J. Cryptol. 5(1992)89–105.
H. Niederreiter, Quasi-Monte Carlo methods and pseudorandom numbers, Bull. Amer. Math. Soc. 84(1978)957–1041.
H. Niederreiter, The serial test for pseudorandom numbers generated by the linear congruential method, Numer. Math. 46(1985)51–68.
H. Niederreiter, A pseudorandom vector generator based on finite arithmetic, Math. Japonica 31(1986)759–774.
H. Niederreiter, A statistical analysis of generalized feedback shift register pseudorandom number generators, SIAM J. Sci. Statist. Comp. 8(1987)1035–1051.
H. Niederreiter, The serial test for digitalk-step pseudorandom numbers, Math. J. Okayama Univ. 30(1988)93–199.
H. Niederreiter, Statistical independence properties of pseudorandom vectors produced by matrix generators, J. Comp. Appl. Math. 31(1990)139–151.
H. Niederreiter, Recent trends in random number and random vector generation, Ann. Oper. Res. 31(1991)323–345.
H. Niederreiter, New methods for pseudorandom number and pseudorandom vector generation,Proc. Winter Simulation Conf. (1992) pp. 264–269.
H. Niederreiter,Random Number Generation and Quasi-Monte Carlo Methods, SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63 (SIAM, Philadelphia, 1992).
H. Niederreiter, On a new class of pseudorandom numbers for simulation methods, J. Comp. Appl. Math., to appear.
S.K. Park and K.W. Miller, Random number generators: Good ones are hard to find, Commun. ACM 31(1988)1192–1201.
W.H. Press and S.A. Teukolsky, Portable random number generators, Comp. Phys. 6(1992)522–524.
B.D. Ripley, The lattice structure of pseudorandom number generators, Proc. Roy. Soc. London, Series A 389(1993)197–204.
B.D. Ripley,Stochastic Simulation (Wiley, New York, 1987).
B.D. Ripley, Uses and abuses of statistical simulation, Math. Progr. 42(1988)53–68.
B.D. Ripley, Thoughts on pseudorandom number generators, J. Comp. Appl. Math. 31(1990)153–163.
A.W. Schrift and A. Shamir, The discrete log is very discreet,Proc. STOC '90 (ACM Publ., 1990) pp. 405–415.
Y.S. Sherif and R.G. Dear, Development of a new composite pseudo-random number generator, Microelectronics and Reliability 30(1990)545–553.
M.S. Stephens, Tests for the uniform distribution, in:Goodness-of-Fit Techniques, eds. R.B. D'Agostino and M.S. Stephens (Marcel Dekker, 1986) pp. 331–366.
R.C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp. 19(1965)201–209.
S. Tezuka, Lattice structure of pseudorandom sequences from shift-register generators,Proc. Winter Simulation Conf. (1990) pp. 266–269.
S. Tezuka, A unified view of long-period random number generators, submitted for publication (1992).
S. Tesuka and P. L'Ecuyer, Efficient and portable combined Tausworthe random number generators, ACM Trans. Modeling Comp. Simul. 1(1991)99–112.
S. Tezuka and P. L'Ecuyer, Analysis of add-with-carry and subtract-with-borrow generators,Proc. Winter Simulation Conf. (1992) pp. 443–447.
S. Tezuka, P. L'Ecuyer and R. Couture, On the add-with-carry and subtract-with-borrow random number generators, ACM Trans. Modeling Comp. Simul. 3(1994)315–331.
S. Tezuka and M. Fushimi, Calculation of Fibonacci Polynomials for GFSR sequences with low discrepancies, Math. Comp. 60(1993)763–770.
J.P.R. Tootill, W.D. Robinson and A.G. Adams, The runs up-and-down performance of Tausworthe pseudo-random number generators, J. ACM 18(1971)381–399.
J.P.R. Tootill, W.D. Robinson and D.J. Eagle, An asymptotically random Tausworthe sequence, J. ACM 20(1973)469–481.
D. Wang and A. Compagner, On the use of reducible polynomials as random number generators, Math. Comp. 60(1993)363–374.
B.A. Wichmann and I.D. Hill, An efficient and portable pseudo-random number generator, Appl. Statist. 31(1982)188–190. See also corrections and remarks in the same journal by Wichmann and Hill, 33(1984)123; McLeod, 34(1985)198–200; Zeisel, 35(1986)89.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
L'Ecuyer, P. Uniform random number generation. Ann Oper Res 53, 77–120 (1994). https://doi.org/10.1007/BF02136827
Issue Date:
DOI: https://doi.org/10.1007/BF02136827