Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Schwinger terms and cohomology of pseudodifferential operators

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the cohomology of the Schwinger term arising in second quantization of the class of observables belonging to the restricted general linear algebra. We prove that, for all pseudodifferential operators in 3+1 dimensions of this type, the Schwinger term is equivalent to the “twisted” Radul cocycle, a modified version of the Radul cocycle arising in non-commutative differential geometry. In the process we also show how the ordinary Radul cocycle for any pair of pseudodifferential operators in any dimension can be written as the phase space integral of the star commutator of their symbols projected to the appropriate asymptotic component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [Ad] Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries type equations. Invent. Math.50, 219–248 (1979)

    Google Scholar 

  • [Ar] Araki, H.: Bogoliubov automorphisms and Fock representations of canonical anticommutation relations. In: Contemp. Math. Vol.62, Providence I. American Math. Soc. 1987

  • [BKK] Bakas, I., Khesin, B., Kiritsis, E.: The Logarithm of the Derivative Operator and Higher Spin Algebras ofW Type. Commun. Math. Phys.151, 233–244 (1993)

    Google Scholar 

  • [BH] Bardakci, K., Halpern, M.B.: New Dual Quark Models. Phys. Rev.D3, 2493–2506 (1971)

    Google Scholar 

  • [CM] Carey, A.L., Murray, M.K.: Mathematical remarks on the cohomology of gauge groups and anomalies. hep-th/9408141

  • [CFNW] Cederwall, M., Ferretti, G., Nilsson, B.E.W., Westerberg, A.: Higher-dimensional loop algebras, non-abelian extensions andp-branes. Nucl. Phys. B424, 97–123 (1994)

    Google Scholar 

  • [C1] Connes, A.: Non-commutative differential geometry: Publ. Math. IHES62, 257–360 (1985)

    Google Scholar 

  • [C2] Connes, A.: The Action Functional in Non-Commutative Geometry. Commun. Math. Phys.117, 673–683 (1988)

    Google Scholar 

  • [Fa] Faddeev, L.D.: Operator anomaly for the Gauss law. Phys. Lett. B145, 81–84 (1984)

    Google Scholar 

  • [FS] Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies. Theor. Math. Phys.60, 770–778 (1984)

    Google Scholar 

  • [Fe] Ferretti, G.: Regularization and quantization of higher dimensional current algebras. Talk given at the Gürsey Memorial Conference I on Strings and Symmetries, Istanbul 1994. Preprint ITP 94-17, Göteborg 1994. hep-th/9406177

  • [FT] Fujii, K., Tanaka, M.: Universal Schwinger Cocycles of Current Algebras in (D+1)-Dimensions: Geometry and Physics. Commun. Math. Phys.129, 267–280 (1990)

    Google Scholar 

  • [G] Guillemin, V.: A New Proof of Weyl's Formula on the Asymptotic Distribution of Eigenvalues. Adv. Math.55, 131–160 (1985)

    Google Scholar 

  • [H] Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Berlin: Springer-Verlag, 1985

    Google Scholar 

  • [Ka1] Kac, V.G.: Simple Graded Algebras of Finite Growth. Funct. Anal. Appl.1, 328–329 (1967)

    Google Scholar 

  • [Ka2] Kac, V.G.: Infinite Dimensional Lie Algebras. 3. ed. Cambridge: Cambridge University Press, 1990

    Google Scholar 

  • [KP] Kac, V.G., Peterson, D.H.: Lectures on the infinite wedge representation and the MPP hierarchy. In: Proceedings of the Summer School on Completely Integrable Systems, Montreal, 1985.

  • [Ki] Kirillov, A.A.: Elements of the Theory of Representations. Berlin: Springer-Verlag, 1976

    Google Scholar 

  • [KK] Kravchenko, O.S., Khesin, B.A.: Central extension of the Lie algebra of (pseudo-) differential symbols. Funct. Anal. Appl.25, 83–85 (1991)

    Google Scholar 

  • [La1] Langmann, E.: Fermion and boson current algebras in (3+1)-dimensions. In: Mickelsson, J., Pekonen, O. (eds.). Topological and Gemetrical Methods in Field Theory, Proceedings, Turku 1991, Singapore: World Scientific, 1992, pp. 183–193

    Google Scholar 

  • [La2] Langmann, E.: Fermion Current Algebras and Schwinger Terms in (3+1)-Dimensions. Commun. Math. Phys.162, 1–32 (1994)

    Google Scholar 

  • [LanM] Langmann, E., Mickelsson, J.: (3+1)-Dimensional Schwinger Terms and Noncommutative Geometry. Phys. Lett. B338, 241–248 (1994)

    Google Scholar 

  • [LawM] Lawson, H., Michelsohn, M.-L.: Spin Geometry. Princeton: Princeton University Press, 1989

    Google Scholar 

  • [Lu] Lundberg, L.-E.: Quasi-free “Second Quantization”. Commun. Math. Phys.50, 103–112 (1976)

    Google Scholar 

  • [Ma] Manin, Yu.I.: Algebraic aspects of non-linear differential equations. J. Sov. Math.11, 1–122 (1979)

    Google Scholar 

  • [Mi1] Mickelsson, J.: On a relation between massive Yang-Mills theories and dual string models. Lett. Math. Phys.7, 45 (1983)

    Google Scholar 

  • [Mi2] Mickelsson, J.: Current Algebras and Groups. New York: Plenum Press, 1989

    Google Scholar 

  • [Mi3] Mickelsson, J.: Renormalization of current algebra. Talk given at the conference Generalized Symmetries in Physics, Claustal 1993. hep-th/9311170

  • [Mi4] Mickelsson, J.: Wodzicki residue and anomalies of current algebras. Preprint, Stockholm 1994. hep-th/9404093

  • [MR] Mickelsson, J., Rajeev, S.G.: Current Algebras ind+1-Dimensions and Determinant Bundles over Infinite-Dimensional Grassmannians. Commun. Math. Phys.116, 365–400 (1988)

    Google Scholar 

  • [Mo] Moody, R.V.: Lie Algebras Associated with Generalised Cartan Matrices. Bull. Am. Math. Soc.73, 217–221 (1967)

    Google Scholar 

  • [P1] Pickrell, D.: Measures on infinite-dimensional Grassmann manifolds. J. Funct. Anal.70, 323–356 (1987)

    Google Scholar 

  • [P2] Pickrell, D.: On the Mickelsson-Faddeev Extension and Unitary Representations. Commun. Math. Phys.123, 617–625 (1989)

    Google Scholar 

  • [PS] Pressley, A., Segal, G.: Loop Groups. Oxford: Clarendon Press, 1986

    Google Scholar 

  • [R1] Radul, A.O.: Non-trivial central extensions of Lie algebras of differential operators in two and higher dimensions. Phys. Lett. B265, 86–91 (1991)

    Google Scholar 

  • [R2] Radul, A.O.: Lie algebras of differential operators, their central extensions, andW-algebras. Funct. Anal. Appl.25, 33–49 (1991)

    Google Scholar 

  • [Sch] Schwinger, J.: Field theory commutators. Phys. Rev. Lett.3, 296–297 (1959)

    Google Scholar 

  • [Si] Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Note Series35. Cambridge: Cambridge University Press, 1979

    Google Scholar 

  • [T] Taylor, M.E.: Pseudodifferential Operators. Princeton, NJ: Princeton University Press, 1981

    Google Scholar 

  • [VG] Várilly, J.C., Garcia-Bondia, J.M.: Connes' noncommutative geometry and the Standard Model. J. Geom. Phys.12, 223–301 (1993)

    Google Scholar 

  • [W] Wodzicki, M.: Noncommutative residue. In: Manin, Yu.I. (ed.) K-theory arithmetic and geometry. Lect. Notes Math. vol.1289, Berlin, Heidelberg, New York: Springer, 1987, pp. 320–399

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Araki

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cederwall, M., Ferretti, G., Nilsson, B.E.W. et al. Schwinger terms and cohomology of pseudodifferential operators. Commun.Math. Phys. 175, 203–220 (1996). https://doi.org/10.1007/BF02101630

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101630

Keywords

Navigation