Abstract
We study the cohomology of the Schwinger term arising in second quantization of the class of observables belonging to the restricted general linear algebra. We prove that, for all pseudodifferential operators in 3+1 dimensions of this type, the Schwinger term is equivalent to the “twisted” Radul cocycle, a modified version of the Radul cocycle arising in non-commutative differential geometry. In the process we also show how the ordinary Radul cocycle for any pair of pseudodifferential operators in any dimension can be written as the phase space integral of the star commutator of their symbols projected to the appropriate asymptotic component.
Similar content being viewed by others
References
[Ad] Adler, M.: On a trace functional for formal pseudodifferential operators and the symplectic structure of the Korteweg-de Vries type equations. Invent. Math.50, 219–248 (1979)
[Ar] Araki, H.: Bogoliubov automorphisms and Fock representations of canonical anticommutation relations. In: Contemp. Math. Vol.62, Providence I. American Math. Soc. 1987
[BKK] Bakas, I., Khesin, B., Kiritsis, E.: The Logarithm of the Derivative Operator and Higher Spin Algebras ofW ∞ Type. Commun. Math. Phys.151, 233–244 (1993)
[BH] Bardakci, K., Halpern, M.B.: New Dual Quark Models. Phys. Rev.D3, 2493–2506 (1971)
[CM] Carey, A.L., Murray, M.K.: Mathematical remarks on the cohomology of gauge groups and anomalies. hep-th/9408141
[CFNW] Cederwall, M., Ferretti, G., Nilsson, B.E.W., Westerberg, A.: Higher-dimensional loop algebras, non-abelian extensions andp-branes. Nucl. Phys. B424, 97–123 (1994)
[C1] Connes, A.: Non-commutative differential geometry: Publ. Math. IHES62, 257–360 (1985)
[C2] Connes, A.: The Action Functional in Non-Commutative Geometry. Commun. Math. Phys.117, 673–683 (1988)
[Fa] Faddeev, L.D.: Operator anomaly for the Gauss law. Phys. Lett. B145, 81–84 (1984)
[FS] Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies. Theor. Math. Phys.60, 770–778 (1984)
[Fe] Ferretti, G.: Regularization and quantization of higher dimensional current algebras. Talk given at the Gürsey Memorial Conference I on Strings and Symmetries, Istanbul 1994. Preprint ITP 94-17, Göteborg 1994. hep-th/9406177
[FT] Fujii, K., Tanaka, M.: Universal Schwinger Cocycles of Current Algebras in (D+1)-Dimensions: Geometry and Physics. Commun. Math. Phys.129, 267–280 (1990)
[G] Guillemin, V.: A New Proof of Weyl's Formula on the Asymptotic Distribution of Eigenvalues. Adv. Math.55, 131–160 (1985)
[H] Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Berlin: Springer-Verlag, 1985
[Ka1] Kac, V.G.: Simple Graded Algebras of Finite Growth. Funct. Anal. Appl.1, 328–329 (1967)
[Ka2] Kac, V.G.: Infinite Dimensional Lie Algebras. 3. ed. Cambridge: Cambridge University Press, 1990
[KP] Kac, V.G., Peterson, D.H.: Lectures on the infinite wedge representation and the MPP hierarchy. In: Proceedings of the Summer School on Completely Integrable Systems, Montreal, 1985.
[Ki] Kirillov, A.A.: Elements of the Theory of Representations. Berlin: Springer-Verlag, 1976
[KK] Kravchenko, O.S., Khesin, B.A.: Central extension of the Lie algebra of (pseudo-) differential symbols. Funct. Anal. Appl.25, 83–85 (1991)
[La1] Langmann, E.: Fermion and boson current algebras in (3+1)-dimensions. In: Mickelsson, J., Pekonen, O. (eds.). Topological and Gemetrical Methods in Field Theory, Proceedings, Turku 1991, Singapore: World Scientific, 1992, pp. 183–193
[La2] Langmann, E.: Fermion Current Algebras and Schwinger Terms in (3+1)-Dimensions. Commun. Math. Phys.162, 1–32 (1994)
[LanM] Langmann, E., Mickelsson, J.: (3+1)-Dimensional Schwinger Terms and Noncommutative Geometry. Phys. Lett. B338, 241–248 (1994)
[LawM] Lawson, H., Michelsohn, M.-L.: Spin Geometry. Princeton: Princeton University Press, 1989
[Lu] Lundberg, L.-E.: Quasi-free “Second Quantization”. Commun. Math. Phys.50, 103–112 (1976)
[Ma] Manin, Yu.I.: Algebraic aspects of non-linear differential equations. J. Sov. Math.11, 1–122 (1979)
[Mi1] Mickelsson, J.: On a relation between massive Yang-Mills theories and dual string models. Lett. Math. Phys.7, 45 (1983)
[Mi2] Mickelsson, J.: Current Algebras and Groups. New York: Plenum Press, 1989
[Mi3] Mickelsson, J.: Renormalization of current algebra. Talk given at the conference Generalized Symmetries in Physics, Claustal 1993. hep-th/9311170
[Mi4] Mickelsson, J.: Wodzicki residue and anomalies of current algebras. Preprint, Stockholm 1994. hep-th/9404093
[MR] Mickelsson, J., Rajeev, S.G.: Current Algebras ind+1-Dimensions and Determinant Bundles over Infinite-Dimensional Grassmannians. Commun. Math. Phys.116, 365–400 (1988)
[Mo] Moody, R.V.: Lie Algebras Associated with Generalised Cartan Matrices. Bull. Am. Math. Soc.73, 217–221 (1967)
[P1] Pickrell, D.: Measures on infinite-dimensional Grassmann manifolds. J. Funct. Anal.70, 323–356 (1987)
[P2] Pickrell, D.: On the Mickelsson-Faddeev Extension and Unitary Representations. Commun. Math. Phys.123, 617–625 (1989)
[PS] Pressley, A., Segal, G.: Loop Groups. Oxford: Clarendon Press, 1986
[R1] Radul, A.O.: Non-trivial central extensions of Lie algebras of differential operators in two and higher dimensions. Phys. Lett. B265, 86–91 (1991)
[R2] Radul, A.O.: Lie algebras of differential operators, their central extensions, andW-algebras. Funct. Anal. Appl.25, 33–49 (1991)
[Sch] Schwinger, J.: Field theory commutators. Phys. Rev. Lett.3, 296–297 (1959)
[Si] Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Note Series35. Cambridge: Cambridge University Press, 1979
[T] Taylor, M.E.: Pseudodifferential Operators. Princeton, NJ: Princeton University Press, 1981
[VG] Várilly, J.C., Garcia-Bondia, J.M.: Connes' noncommutative geometry and the Standard Model. J. Geom. Phys.12, 223–301 (1993)
[W] Wodzicki, M.: Noncommutative residue. In: Manin, Yu.I. (ed.) K-theory arithmetic and geometry. Lect. Notes Math. vol.1289, Berlin, Heidelberg, New York: Springer, 1987, pp. 320–399
Author information
Authors and Affiliations
Additional information
Communicated by H. Araki
Rights and permissions
About this article
Cite this article
Cederwall, M., Ferretti, G., Nilsson, B.E.W. et al. Schwinger terms and cohomology of pseudodifferential operators. Commun.Math. Phys. 175, 203–220 (1996). https://doi.org/10.1007/BF02101630
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02101630