Abstract
Algorithms for numerical computation of symmetric elliptic integrals of all three kinds are improved in several ways and extended to complex values of the variables (with some restrictions in the case of the integral of the third kind). Numerical check values, consistency checks, and relations to Legendre's integrals and Bulirsch's integrals are included.
Similar content being viewed by others
References
R. Bulirsch, Numerical calculation of elliptic integrals and functions, Numer. Math. 7 (1965) 78–90, 353–354; 13 (1969) 305–315.
P.F. Byrd and M.D. Friedman,Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. (Springer, New York, 1971).
B.C. Carlson, On computing elliptic integrals and functions., J. Math. and Phys. 44 (1965) 36–51.
B.C. Carlson, Elliptic integrals of the first kind, SIAM J. Math. Anal. 8 (1977) 231–242.
B.C. Carlson, Computing elliptic integrals by duplication, Numer. Math. 33 (1979) 1–16.
B.C. Carlson and E.M. Notis, Algorithm 577: Algorithms for incomplete elliptic integrals, ACM Trans. Math. Software 7 (1981) 398–403.
B.C. Carlson, A table of elliptic integrals of the second kind, Math. Comp. 49 (1987) 595–606. (Supplement, ibid. Math. Comp. 49 (1987) S13–S17.)
B.C. Carlson, A table of elliptic integrals of the third kind, Math. Comp. 51 (1988) 267–280. (Supplement, ibid. Math. Comp. 51 (1988) S1–S5.)
B.C. Carlson, A table of elliptic integrals: cubic cases, Math. Comp. 53 (1989) 327–333.
B.C. Carlson, A table of elliptic integrals: one quadratic factor, Math. Comp. 56 (1991) 267–280.
B.C. Carlson, A table of elliptic integrals: two quadratic factors, Math. Comp. 59 (1992) 165–180.
G. Fubini, Nuovo metodo per lo studio e per il calcolo delle funzioni transcendenti elementari, Period. Mat. 12 (1897) 169–178.
W.H. Press and S.A. Teukolsky, Elliptic integrals, Comp. Phys. 4 (1990) 92–98.
W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, New York, 1992).
W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery,Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge Univ. Press, New York, 1992).
D.G. Zill and B.C. Carlson, Symmetric elliptic integrals of the third kind, Math. Comp. 24 (1970) 199–214.
Author information
Authors and Affiliations
Additional information
This work was supported by the Director of Energy Research, Office of Basic Energy Sciences. The Ames Laboratory is operated for the US Department of Energy by Iowa State University under Contract W-7405-ENG-82.
Rights and permissions
About this article
Cite this article
Carlson, B.C. Numerical computation of real or complex elliptic integrals. Numer Algor 10, 13–26 (1995). https://doi.org/10.1007/BF02198293
Issue Date:
DOI: https://doi.org/10.1007/BF02198293