Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Residuenabschätzung für Polynom-Nullstellen mittels Lagrange-Interpolation

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

If, for each zero of a polynomial, an approximation is known, estimates for the errors of these approximations are given, based on the evaluation of the polynomial at these points. The procedure can be carried over to the case of multiple roots and root clusters using derivatives up to the orderk - 1, wherek is the multiplicity of the cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Börsch-Supan, W.: A posteriori error bounds for the zeros of polynomials. Numer. Math. 5, 380–398 (1963).

    Google Scholar 

  2. ——: Defektabschätzungen für Polynom-Nullstellen. Z. angew. Math. Mech.42, T 7–8 (1962).

    Google Scholar 

  3. Braess, D., Späth, H.: Maßnahmen zur globalen Konvergenzerzwingung beim Newtonschen Verfahren für spezielle nichtlineare Gleichungssysteme. Z. angew. Math. Mech. 47, 409–410 (1967)

    Google Scholar 

  4. Ehrlich, L. W.: A modified Newton method for polynomials. Comm. Assoc. Comp. Mach. 10, 107–108 (1967).

    Google Scholar 

  5. Illief, L., Dočev, K.: Über Newtonsche Iterationen. Wiss. Z. TH Dresden 12, 117–118 (1963).

    Google Scholar 

  6. Kerner, I. O.: Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen. Numer. Math.8, 290–294 (1966).

    Google Scholar 

  7. Schmidt, J. W., Dressel, H.: Fehlerabschätzungen bei Polynomgleichungen mit dem Fixpunktsatz von Brouwer. Numer. Math.10, 42–50 (1967)

    Google Scholar 

  8. Titchmarsh, E. C.: The theory of functions, 2nd ed. London: Oxford Univ. Press 1939

    Google Scholar 

  9. Weierstraß, K.: Neuer Beweis des Satzes, ... Mathematische Werke, Bd. 3. S. 251–269. Berlin 1903.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Börsch-supan, W. Residuenabschätzung für Polynom-Nullstellen mittels Lagrange-Interpolation. Numer. Math. 14, 287–296 (1970). https://doi.org/10.1007/BF02163336

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02163336

Navigation