Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A rational Lanczos algorithm for model reduction

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper presents a model reduction method for large-scale linear systems that is based on a Lanczos-type approach. A variant of the nonsymmetric Lanczos method, rational Lanczos, is shown to yield a rational interpolant (multi-point Padé approximant) for the large-scale system. An exact expression for the error in the interpolant is derived. Examples are utilized to demonstrate that the rational Lanczos method provides opportunities for significant improvements in the rate of convergence over single-point Lanczos approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.C. Antoulas and B.D.O. Anderson, Rational interpolation and state variable realizations, Lin. Alg. Appl. 137 (1990) 479–509.

    Google Scholar 

  2. G.A. Baker Jr.,Essentials of Padé Approximants (Academic Press, New York, 1975).

    Google Scholar 

  3. D.L. Boley and G. Golub, The nonsymmetric Lanczos algorithm and controllability, Syst. Contr. Lett. 16 (1991) 97–105.

    Google Scholar 

  4. D.L. Boley, Krylov space methods on state-space control models, Report No. TR92-18, Department of Computer Science, University of Minnesota, MN (1992).

    Google Scholar 

  5. R.R. Craig Jr., Recent literature on structural modeling, identification, and analysis, in:Mechanics and Control of Large Flexible Structures, ed. J.L. Junkins (AIAA, Washington, 1990).

    Google Scholar 

  6. E. Chiprout and M.S. Nakhla,Asymptotic Waveform Evaluation and Moment Matching for Interconnect Analysis (Kluwer Academic, Boston, MA, 1994).

    Google Scholar 

  7. P. Feldman and R.W. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Comp.-Aided Design 14 (1995) 639–649.

    Google Scholar 

  8. L. Fortuna, G. Nunnari and A. Gallo,Model Reduction Techniques with Applications in Electrical Engineering (Springer, London, 1992).

    Google Scholar 

  9. R.W. Freund, M.H. Gutknecht and N.M. Nachtigal, An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comp. 14 (1993) 137–158.

    Google Scholar 

  10. K. Gallivan, E. Grimme and P. Van Dooren, Asymptotic waveform evaluation via a Lanczos method, Appl. Math. Lett. 7 (1994) 75–80.

    Google Scholar 

  11. K. Gallivan, E. Grimme and P. Van Dooren, Padé Approximation of large-scale dynamic systems with Lanczos methods,Proc. 33rd IEEE Conf. on Decision and Control, Lake Buena Vista, FL (1994).

  12. E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations by Krylov approximation methods, SIAM J. Sci. Statist. Comp. 13 (1992) 1236–1264.

    Google Scholar 

  13. G.H. Golub and C.F. Van Loan,Matrix Computations, 2nd ed. (Johns Hopkins University Press, Baltimore, MD, 1989).

    Google Scholar 

  14. W.B. Gragg and A. Lindquist, On the partial realization problem, Lin. Alg. Appl. 50 (1983) 277–319.

    Google Scholar 

  15. E. Grimme, D. Sorensen and P. Van Dooren, Model reduction of state space systems via an implicitly restarted Lanczos method, Numer. Algor. (1996), this issue.

  16. C. Hwang and M.-Y. Chen, A multi-point continued-fraction expansion for linear system reduction, IEEE Trans. Auto. Contr. AC-31 (1986) 648–651.

    Google Scholar 

  17. I.M. Jaimoukha and E.M. Kasenally, Oblique projection methods for large scale model reduction, SIAM J. Matrix Anal. Appl. (1995), to appear.

  18. C. Kenney, A.J. Laub and S. Stubberud, Frequency response computation via rational interpolation, IEEE Trans. Auto. Contr. AC-38 (1993) 1203–1213.

    Google Scholar 

  19. C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Nat. Bureau Stan. 45 (1950) 255–282.

    Google Scholar 

  20. B. Nour-Omid and R.W. Clough, Dynamic analysis of structures using Lanczos co-ordinates, Earthquake Eng. Struc. Dyn. 12 (1984) 565–577.

    Google Scholar 

  21. B.N. Parlett, D.R. Taylor and Z.S. Liu, A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comp. 44 (1985) 105–124.

    Google Scholar 

  22. B.N. Parlett, Reduction to tridiagonal form and minimal realizations, SIAM J. Matrix Anal. Appl. 13 (1992) 567–593.

    Google Scholar 

  23. A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Lin. Alg. Appl. 58 (1984) 391–405.

    Google Scholar 

  24. A. Ruhe, Rational Krylov algorithms for nonsymmetric eigenvalue problems II: Matrix pairs, Lin. Alg. Appl. 197 (1994) 283–295.

    Google Scholar 

  25. A. Ruhe, The rational Krylov algorithm for nonsymmetric eigenvalue problems III: Complex shifts for real matrices, BIT 34 (1994) 165–176.

    Google Scholar 

  26. Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 29 (1992) 209–228.

    Google Scholar 

  27. T.-J. Su and R.R. Craig Jr., Krylov vector methods for model reduction and control of flexible structures, in:Control and Dynamic Systems: Integrated Technology Methods in Aerospace Systems Design, ed. C.T. Leondes (Academic Press, London, 1992).

    Google Scholar 

  28. P. Van Dooren, Numerical linear algebra techniques for large scale matrix problems in systems and control,Proc. 31st IEEE Conf. on Decision and Control, Tucson, AZ (1992).

  29. C.D. Villemagne and R.E. Skelton, Model reduction using a projection formulation, Int. J. Control 46 (1987) 2141–2169.

    Google Scholar 

  30. E.L. Wilson, M.-W. Yuan and J.M. Dickens, Dynamic analysis by direct superposition of Ritz vectors, Earthquake Eng. Struc. Dyn. 10 (1982) 813–821.

    Google Scholar 

  31. P. Wortelboer, Frequency-weighted balanced reduction of closed-loop mechanical servosystems: theory and tools, PhD thesis, Technical University, Delft (1994).

    Google Scholar 

  32. H. Xiheng, FF-Padé method of model reduction in frequency domain, IEEE Trans. Auto. Contr. AC-32 (1987) 243–246.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M.H. Gutknecht

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallivan, K., Grimme, G. & Van Dooren, P. A rational Lanczos algorithm for model reduction. Numer Algor 12, 33–63 (1996). https://doi.org/10.1007/BF02141740

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02141740

Keywords

AMS subject classification

Navigation