Abstract
In this paper we introduce a new preconditioner for banded Toeplitz matrices, whose inverse is itself a Toeplitz matrix. Given a banded Hermitian positive definite Toeplitz matrixT, we construct a Toepliz matrixM such that the spectrum ofMT is clustered around one; specifically, if the bandwidth ofT is β, all but β eigenvalues ofMT are exactly one. Thus the preconditioned conjugate gradient method converges in β+1 steps which is about half the iterations as required by other preconditioners for Toepliz systems that have been suggested in the literature. This idea has a natural extension to non-banded and non-Hermitian Toeplitz matrices, and to block Toeplitz matrices with Toeplitz blocks which arise in many two dimensional applications in signal processing. Convergence results are given for each scheme, as well as numerical experiments illustrating the good convergence properties of the new preconditioner.
Similar content being viewed by others
References
G.S. Ammar and W.B. Gragg, Superfast solution of real positive definite Toeplitz systems, SIAM J. Matrix Anal. Appl. 9 (1988) 61–76.
O. Axelsson and V.A. Barker,Finite Element Solution of Boundary Value Problems, Theory and Computation (Academic Press, New York, 1984).
E.H. Bareiss, Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices, Numer. Math. 13 (1969) 404–424.
A. Björck, Least squares method, in:Handbook of Numerical Analysis vol. 1, eds. P.G. Ciarlet and J.L. Lions (Elsevier/North-Holland, 1990).
A.W. Bojanczyk, R.P. Brent and F.R. de Hoog, QR factorization of Toeplitz matrices, Numer. Math. 49 (1986) 81–94.
J.R. Bunch, Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Statist. Comp. 6 (1985) 349–364.
R.H. Chan, Circulant preconditioners for Hermitian Toeplitz systems, SIAM J. Matrix Anal. Appl. 10 (1989) 542–550.
R.H. Chan and X.-Q. Jin, A family of block preconditioners for block systems, SIAM J. Sci. Statist. Comp. 13 (1992) 1218–1235.
R.H. Chan, J.G. Nagy and R.J. Plemmons, Circulant preconditioned Toeplitz least squares iterations, SIAM J. Matrix Anal. Appl. 15 (1994), to appear.
R.H. Chan and K.-P. Ng, Toeplitz preconditioners for Hermitian Toeplitz systems, Lin. Alg. Appl. 190 (1993) 181–208.
R.H. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Statist. Comp. 10 (1989) 104–119.
R.H. Chan and M.-C. Yeung, Circulant preconditioners for complex Toeplitz matrices, SIAM J. Numer. Anal. 30 (1993) 1193–1207.
T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comp. 9 (1988) 766–771.
T. Chan and J. Olkin, Preconditioners for Toeplitz-block matrices, Numer. Algor. 6 (1994) 89–101.
P.J. Davis,Circulant Matrices (Wiley, New York, 1979).
R.W. Freund, G.H. Golub and N.M. Nachtigal, Iterative, solution of linear systems, Acta Numer. 1 (1991) 1–44.
G.H. Golub and C.F. Van Loan,Matrix Computations (The Johns Hopkins University Press, Baltimore, MD, 2nd ed., 1989).
M. Hanke, J.G. Nagy and R.J. Plemmons, Preconditioned iterative regularization for ill-posed problems, in:Numerical Linear Algebra and Scientific Computing, eds., L. Reichel, A. Ruttan and R.S. Varga (de Gruyter, Berlin, 1993) pp. 141–163.
T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl. 13 (1992) 767–777.
T. Huckle, Some aspects of circulant preconditioners, SIAM J. Sci. Statist. Comp. 14 (1993) 531–541.
A.K. Jain, Fast inversion of banded Toeplitz matrices by circular decompositions, IEEE Trans. Acoust. Speech Signal Process. 26 (1978) 121–126.
A.K. Jain,Fundamentals of Digital Image Processing (Prentice-Hall, Englewood Cliffs, NJ, 1989).
S.L. Johnsson, Solving narrow banded systems on ensemble architectures, ACM Trans. Math. Software 11 (1985) 271–288.
T.-K. Ku and C.-C. Kuo, Design and analysis of Toeplitz preconditioners, IEEE Trans. Acoust. Speech Signal Process. 40 (1992) 129–140.
T.-K. Ku and C.-C. Kuo, Spectral properties of preconditioned rational Toeplitz matrices: the nonsymmetric case, SIAM J. Matrix Anal. Appl. 14 (1993) 521–544.
T.-K. Ku and C.-C. Kuo, On the spectrum of a family of preconditioned block Toeplitz matrices, SIAM J. Sci. Statist. Comp. 13 (1992) 948–966.
E. Linzer, On the stability of solution methods for band Toeplitz systems, Lin. Alg. Appl. 170 (1992) 1–32.
A.V. Oppenheim and R.W. Schafer,Discrete-Time Signal Processing, (Prentice-Hall, Englewood Cliffs, NJ, 1989).
G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math. 74 (1986) 171–176.
M. Tismenetsky, A decomposition of Toeplitz matrices and optimal circulant preconditioning, Lin. Alg. Appl. 154–156 (1991) 105–121.
E.E. Tyrtyshnikov, Optimal and superoptimal circulant preconditioners, SIAM J. Matrix Anal. Appl. 13 (1992) 459–473.
C. Van Loan,Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, PA, 1992).
Author information
Authors and Affiliations
Additional information
Communicated by M.H. Gutknecht
Partly supported by a travel fund from the Deutsche Forschungsgemeinschaft.
Research supported in part by Oak Ridge Associated Universities grant no. 009707.
Rights and permissions
About this article
Cite this article
Hanke, M., Nagy, J.G. Toeplitz approximate inverse preconditioner for banded Toeplitz matrices. Numer Algor 7, 183–199 (1994). https://doi.org/10.1007/BF02140682
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02140682