Abstract
We propose a tabu search heuristic for the location/allocation problem with balancing requirements. This problem typically arises in the context of the medium term management of a fleet of containers of multiple types, where container depots have to be selected, the assignment of customers to depots has to be established for each type of container, and the interdepot container traffic has to be planned to account for differences in supplies and demands in various zones of the geographical territory served by a container shipping company. It is modeled as a mixed integer program, which combines zero-one location variables and a multicommodity network flow structure. Extensive computational results on a set of benchmark problems and comparisons with an efficient dual ascent procedure are reported. These show that tabu search is a competitive approach for this class of problems.
Similar content being viewed by others
References
A. Balakrishnan, T.L. Magnanti and R.T. Wong, A dual-ascent procedure for large-scale uncapacitated network design, Oper. Res. 37(1989)716–740.
T.G. Crainic, P.J. Dejax and L. Delorme, Models for multimode multicommodity location problems with interdepot balancing requirements, Ann Oper. Res. 18(1989)279–302.
T.G. Crainic, L. Delorme and P.J. Dejax, A branch-and-bound method for multicommodity location with balancing requirements, Eur. J. Oper. Res. (1993), to appear.
T.G. Crainic and L. Delorme, Dual-ascent procedures for multicommodity location/allocation problems with balancing requirements, Transp. Sci. (1993), to appear.
P.J. Dejax, T.G. Crainic and L. Delorme, Strategic/tactical planning of container land transportation systems,TIMS XXVIII/EURO IX Joint Meeting, Paris (1988).
D. de Werra and A. Hertz, Tabu search techniques — A tutorial and application to neural networks, OR Spektrum 11(1989)131–141.
M. Gendreau, A. Hertz and G. Laporte, A tabu search heuristic for the vehicle routing problem, Publication #777, Centre de Recherche sur les Transports, Université de Montréal (1991).
F. Glover, Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res. 13(1986)533–549.
F. Glover, Tabu search, Part I, ORSA J. Comput. 1(1989)190–206.
F. Glover, Tabu search, Part II, ORSA J. Comput. 2(1990)4–32.
M.D. Grigoriadis and T. Hsu, RNET — The Rutgers minimum cost network flow subroutines, Rutgers University, New Brunswick, New Jersey (1979).
Z.-Y. Guo, Résolution heuristique et optimale du problème de localisation de dépôts avec équilibrage, Ph.D. Thesis, Département de Génie Industriel, Ecole Centrale, Paris (1990).
Z.-Y. Guo, T.G. Crainic and L. Delorme, Résolution heurestique du problème de localisation-distribution avec équilibrage, Logistique/logistics: Production, distribution, transport/manufacturing, distribution, transportation,Proc. Conf. on the Practice and Theory of Operations Management and4es journées francophones sur la Logistique et les Transports, AFCET (1989) pp. 87–95.
P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, Rutcor Research Report 93-87, Rutgers University (1987).
J. Skorin-Kapov, Tabu search applied to the quadractic assignment problem, ORSA J. Comput. 2(1990)33–45.
N. Tétreault, Une approache de restriction basée sur une méthode primale-duale pour résoudre le problème de localisation-distribution avec échanges intérdépôts, M.Sc. Thesis, Publication #681, Centre de Recherche sur les Tranports, Université de Montréal (1990).
M. Widmer and A. Hertz, A new heuristic for solving the flow shop sequencing problem, Eur. J. Oper. Res. 41(1989)186–193.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Crainic, T.G., Gendreau, M., Soriano, P. et al. A tabu search procedure for multicommodity location/allocation with balancing requirements. Ann Oper Res 41, 359–383 (1993). https://doi.org/10.1007/BF02023001
Issue Date:
DOI: https://doi.org/10.1007/BF02023001