Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Page usage in a quadtree index

  • Part I Computer Science
  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

This paper provides a characterization of the storage needs of a quadtree when used as an index to access large volumes of 2-dimensional data. It is shown that the page occupancy for data in random order approaches 33%. A precise mathematical analysis that involves a modicum of hypergeometric functions and dilogarithms, together with some computer algebra is presented.

A brief survey of the analysis of storage usage in tree structures is included. The 33% ratio for quadtrees is to be compared to the figures for binary search trees (50%), tries (69%), and quadtries (46%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berndt, B. C.Ramanujan's Notebooks, Part I. Springer Verlag, 1985.

  2. Bronstein, M.On solutions of linear ordinary differential equations in their coefficient field. Tech. Rep. 152, Department Informatik, ETH, January 1991.

  3. Char, B. W., Geddes, K. O., Gonnet, G. H., Monagan, M. B. and Watt, S. M.MAPLE: Reference Manual. University of Waterloo, 1988. 5th edition.

  4. Cunto, W. and Poblete, P.Transforming multiway trees into a practical external data structure. Acta Informatica 26, 3 (1988), 193–212.

    Google Scholar 

  5. Devroye, L. and Laforest, L.An analysis of random d-dimensional quad trees. SIAM Journal on Computing 19 (1990), 821–832.

    Google Scholar 

  6. Fagin, R., Nievergelt, J., Pippenger, N. and Strong, R.Extendible hashing: A fast access method for dynamic files. A.C.M. Trans. Database Syst. 4 (1979), 315–344.

    Google Scholar 

  7. Finkel, R. A. and Bentley, J. L.Quad trees, a data structure for retrieval on composite keys. Acta Informatica 4 (1974), 1–9.

    Google Scholar 

  8. Flajolet, P.On the performance evaluation of extendible hashing and trie searching. Acta Inf. 20 (1983), 345–369.

    Google Scholar 

  9. Flajolet, P., Gonnet, G., Puech, C. and Robson, J. M.The analysis of multidimensional searching in quad-trees. In Proceedings of the Second Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, 1991), SIAM Press, pp. 100–109.

  10. Flajolet, P., Gonnet, G., Puech, C. and Robson, J. M.Analytic variations on quadtrees. Algorithmica (1992). 24 pages, to appear.

  11. Flajolet, P. and Odlyzko, A. M.Singularity analysis of generating functions. SIAM Journal on Discrete Mathematics 3, 2 (1990), 216–240.

    Google Scholar 

  12. Flajolet, P. and Puech, C.Partial match retrieval of multidimensional data. Journal of the ACM 33, 2 (1986), 371–407.

    Google Scholar 

  13. Flajolet, P. and Richmond, B.Generalized digital trees and their difference-differential equations, Apr. 1991. 15 pages. INRIA Research Report, in press. Also submitted to Random Structures and Algorithms.

  14. Gonnet, G. H. and Baeza-Yates, R.Handbook of Algorithms and Data Structures: in Pascal and C, Second ed. Addison-Wesley, 1991.

  15. Hennequin, P.Analyse en moyenne d'algorithmes, tri rapide et arbres de recherche. PhD thesis, École Polytechnique 1991.

  16. Knuth, D. E.The Art of Computer Programming, vol. 3: Sorting and Searching. Addison-Wesley, 1973.

  17. Labelle, G. and Laforest, L.Variations combinatoires autour des arborescences hyperquaternaires. Tech. rep., LACIM, UQAM, Montreal, November 1991.

  18. Laforest, L.Étude des arbres hyperquaternaires. Tech. Rep. 3, LACIM, UQAM, Montreal, Nov. 1990. (Author's PhD Thesis at McGill University).

  19. Larson, P. Å.Dynamic hashing. BIT 18 (1978), 184–201.

    Google Scholar 

  20. Lewin, L.Polylogarithms and Associated Functions. North-Holland, New York, 1981.

    Google Scholar 

  21. Mahmoud, H. M. and Pittel, B.Analysis of the space of search trees under the random insertion algorithm. J. Algorithms 10 (1989), 52–75.

    Google Scholar 

  22. Régnier, M.Analysis of grid file algorithms. BIT 25 (1985), 335–357.

    Google Scholar 

  23. Samet, H.The Design and Analysis of Special Data Structures. Addison-Wesley, 1990.

  24. Sedgewick, R.Algorithms, second ed. Addison-Wesley, Reading, Mass., 1988.

    Google Scholar 

  25. Vitter, J. S. and Flajolet, P.Analysis of algorithms and data structures. InHandbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A: Algorithms and Complexity. North Holland, 1990, ch. 9, pp. 431–524.

    Google Scholar 

  26. Wasow, W.Asymptotic Expansions for Ordinary Differential Equations. Dover, 1987. A reprint of the John Wiley edition, 1965.

  27. Whittaker, E. T. and Watson, G. N.A Course of Modern Analysis, fourth ed. Cambridge University Press, 1927. Reprinted 1973.

  28. Yao, A. C.-C.On random 2–3trees. Acta Informatica 9, 2 (1978), 159–170.

    Google Scholar 

  29. Mahmoud, H. M.Evolution of Random Search Trees, Wiley, 1992.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The research of this author was done while visiting INRIA, Rocquencourt, France under support from the Ministry of Education of Japanese Government.

Work of this author was supported in part by the Basic Research Action of the E.C. under contract No. 3075 (Project ALCOM).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshi, M., Flajolet, P. Page usage in a quadtree index. BIT 32, 384–402 (1992). https://doi.org/10.1007/BF02074876

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02074876

Computing Reviews Classification

Navigation