Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Generalized Hessian matrix and second-order optimality conditions for problems withC 1,1 data

  • Published:
Applied Mathematics and Optimization Aims and scope Submit manuscript

Abstract

In this paper, we present a generalization of the Hessian matrix toC 1,1 functions, i.e., to functions whose gradient mapping is locally Lipschitz. This type of function arises quite naturally in nonlinear analysis and optimization. First the properties of the generalized Hessian matrix are investigated and then some calculus rules are given. In particular, a second-order Taylor expansion of aC 1,1 function is derived. This allows us to get second-order optimality conditions for nonlinearly constrained mathematical programming problems withC 1,1 data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya Schulz R, Gormaz Arancibia R (1979) Problemas localmente Lipschitzianos en optimizacion. (Master's thesis) University of Chile at Santiago

  2. Auslender A (1979) Penalty methods for computing points that satisfy second order necessary conditions. Math Programming 17:229–238

    Google Scholar 

  3. Auslender A (1981) Stability in mathematical programming with nondifferentiable data; second order directional derivative for lower-C 2 functions.

  4. Ben-Tal A, Zowe J (1982) Necessary and sufficient optimality conditions for a class of nonsmooth minimization problems. Math Programming 24:70–91

    Google Scholar 

  5. Brezis H (1973) Opérateurs maximaux monotones. North-Holland, Amsterdam

    Google Scholar 

  6. Bernstein B, Toupin R (1962) Some properties of the Hessian matrix of a strictly convex function. Journal für die Reine und Angewandte Mathematik 210:65–72

    Google Scholar 

  7. Clarke FH (1975) Generalized gradients and applications. Trans Amer Math Soc 205:247–262

    Google Scholar 

  8. Clarke FH (1976) On the inverse function theorem. Pacif J Math 64:97–102

    Google Scholar 

  9. Fitzpatrick S, Phelps R (to appear) Differentiability of the metric projection in Hilbert spaces.

  10. Hestenes M (1975) Optimization theory: The finite dimensional case. Wiley, New York

    Google Scholar 

  11. Hiriart-Urruty J-B (1977) Contributions à la programmation mathématique: Cas déterministe et stochastique. (Doctoral thesis) Sciences Mathématiques, Université de Clermont-Ferrand II

  12. Hiriart-Urruty J-B (1979) Refinements of necessary optimality conditions in nondifferentiable programming I. Appl Math Optim 5:63–82

    Google Scholar 

  13. Hiriart-Urruty J-B (1982a) Refinements of necessary optimality conditions in nondifferentiable programming II. Math Programming Study 19:120–139

    Google Scholar 

  14. Hiriart-Urruty J-B (1982b) Characterizations of the plenary hull of the generalized Jacobian matrix. Math Programming Study 17:1–12

    Google Scholar 

  15. Holmes R (1973) Smoothness of certain metric projections on Hilbert spaces. Trans Amer Math Soc 184:87–100

    Google Scholar 

  16. Ioffe A (1981) Second order conditions in nonlinear nonsmooth problems of semi-infinite programming.

  17. Kinderlehrer D, Stampacchia G (1980) An introduction to variational inequalities and their applications. Academic Press, New York

    Google Scholar 

  18. Moreau J-J (1965) Proximité et dualité dans un espace hilbertien. Bulletin de la Société Mathématique de France 93:273–299

    Google Scholar 

  19. Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York

    Google Scholar 

  20. Rockafellar RT (1976) Solving a nonlinear programming problem by way of a dual problem. Symposia Mathematica 19:135–160

    Google Scholar 

  21. Stoer J, Witzgall C (1970) Convexity and optimization in finite dimensions I. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Stoer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hiriart-Urruty, JB., Strodiot, JJ. & Nguyen, V.H. Generalized Hessian matrix and second-order optimality conditions for problems withC 1,1 data. Appl Math Optim 11, 43–56 (1984). https://doi.org/10.1007/BF01442169

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01442169

Keywords

Navigation