Summary
In this paper we derive error estimates for a class of finite element approximation of the Stokes equation. These elements, popular among engineers, are conforming lagrangian both in velocity and pressure and therefore based on a mixed variational principle. The error estimates are established from a new Brezzi-type inequality for this kind of mixed formulation. The results are true in 2 or 3 dimensions.
Similar content being viewed by others
References
Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multiplier. RAIRO, Série Analyse Numérique, R.2. p. 129–151 (1974)
Brezzi, F., Raviart, P.A.: Mixed Finite Element Methods for the 4th order elliptic equations. Topics in Numerical Analysis III, (J.J.H. Miller, ed.) New York: Academic Press, (in press)
Hood, P., Taylor, G.: Navier-Stokes equation using mixed interpolation, Finite Element Method in flow problems, Oden Editor, UAH Press (1974)
Huyakorn, P.S., Taylor, C., Lee, R.L., Gresho, P.M.: A comparison of various mixed-interpolation Finite elements for the Navier Stokes equation. Computer and Fluids,6, 25–35 (1978)
Jamet, Raviart, P.A.: Numerical Solution of the Stationary Navier-Stokes equation by Finite Element Method. Lecture notes in Computer Science, V. 10, Berlin-Heidelberg-New York: Springer, 193–223 (1974)
Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flows. London: Gordon and Breach (1963)
Le Tallec, P.: Simulation Numérique d'Ecoulements Visqueux. Thèse 3ème cycle, Paris 6, Juin 1978.
Nickell, R.E., Tanner, R.I., Caswell, B.: The solution of viscous incompressible jet and free surface flow using Finite Element Method. J. Fluid. Mech.,65, 189–206 (1974)
Raviart, P.A.: Finite Element Methods and Navier Stokes equations. University of Paris 6, LAN, International Report No 189
Thomas, J.M.: (1977) Sur l'Analyse Numérique des Méthodes d'Eléments Finis Hybrides et Mixtes. Doctoral Thesis, Paris 6
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bercovier, M., Pironneau, O. Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33, 211–224 (1979). https://doi.org/10.1007/BF01399555
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01399555