Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Gröbner bases of ideals defined by functionals with an application to ideals of projective points

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

In this paper we study 0-dimensional polynomial ideals defined by a dual basis, i.e. as the set of polynomials which are in the kernel of a set of linear morphisms from the polynomial ring to the base field. For such ideals, we give polynomial complexity algorithms to compute a Gröbner basis, generalizing the Buchberger-Möller algorithm for computing a basis of an ideal vanishing at a set of points and the FGLM basis conversion algorithm.

As an application to Algebraic Geometry, we show how to compute in polynomial time a minimal basis of an ideal of projective points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Backelin, J.: Communication at MEGA '90

  2. Backelin, J., Fröberg, R.: How we proved that there exactly 924 cyclic 7-roots, Proc. ISSAC 91, 103–111, ACM (1991)

    Google Scholar 

  3. Becker, T., Weispfenning, V.: The Chinese remainder, multivariate interpolation and Gröbner bases. Proc. ISSAC 91, 64–69, ACM (1991)

    Google Scholar 

  4. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal, Ph.D. Thesis, Innsbruck, (1965)

  5. Buchberger, B.: Gröbner bases: an algorithmic method in polynomial ideal theory in Recent trends in multidimensional systems theory, Bose, N. K. (ed.) Dordrecht: Reidel 1985

    Google Scholar 

  6. Buchberger, B.: A criterion for detecting unnecessary reductions in the construction of Gröbner bases. Proc. Eurosam 79. Lecture Notes in Computer Science vol. 72 pp. 3–21. Berlin, Heidelberg, New York: Springer 1979

    Google Scholar 

  7. Buchberger, B., Möller, H. M.: The construction of multivariate polynomials with preassigned zeroes, Proc. EUROCAM 82, Lecture Notes in Computer Science vol. 144 pp. 24–31. Berlin, Heidelberg, New York: Springer 1982

    Google Scholar 

  8. Cerlienco, L., Mureddu, M.: Combinatorial algorithms for polynomial interpolation in dimension ≧ 2 (in preparation)

  9. Eliahou, S.: Minimal syzygies of monomial ideals and Gröbner bases (preprint)

  10. Faugere, J. C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comp. (submitted) (1989)

  11. Gebauer, R., Möller, H. M.: On an installation of Buchberger's Algorithm, J. Symb. Comp.6, 275–286 (1988)

    Google Scholar 

  12. Gianni, P., Mora, T.: Algebraic solution of systems of polynomial equations using Gröbner bases. Lecture Notes in Computer Science vol. 356, pp. 247–257. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  13. Giusti, M.: Complexity of standard bases in projective dimension zero II. Proc. AAECC 8. Lecture Notes in Computer Science vol. 508, pp. 322–328. Berlin, Heidelberg, New York: Springer 1991

    Google Scholar 

  14. Giusti, M., Heintz, J.: Algorithmes — disons rapides — pour la décomposition d'une variété en composantes irréductibles et équidimensionnelles, Proc. MEGA '90. Basel: Birkhäuser 1991

  15. Gröbner, W.: Algebraische Geometrie, Vol. 2, Bibliographisches Institut Mannheim (1967–1968)

  16. Heuser, H. G.: Functional analysis. New York: Wiley 1982

    Google Scholar 

  17. Lakshman, Y. N.: A single exponential bound on the complexity of computing Gröbner bases of zero dimensional ideals. Proc. MEGA '90. Basel: Birkhauser 1991

    Google Scholar 

  18. Lakshman, Y. N.: On the complexity of computing Gröbner bases of zero dimensional ideals, Ph.D. Thesis, Rensselaer Polytechnique Institute, Troy (1990)

    Google Scholar 

  19. Lazard, D.: Gröbner bases, Gaussian elimination and resolution of systems of algebraic equations, Proc. Eurocal 83. Lecture Notes in Computer Science vol. 162, pp. 146–156. Berlin, Heidelberg, New York: Springer 1983

    Google Scholar 

  20. Marihari, M. G., Möller, H. M., Mora, T.: Gröbner bases of ideals given by dual bases. Proc. ISSAC 91, ACM 55–63 (1991)

    Google Scholar 

  21. Möller, H. M., Mora, T.: New constructive methods in classical ideal theory. J. Algebra100, 138–178 (1986)

    Google Scholar 

  22. Ramella, L: Algoritmi di computer algebra relativi agli ideali di punti dello spazio proiettivo, Ph.D. Thesis, Univ. Napoli (1990)

  23. Robbiano, L.: Bounds for degrees and number of elements in Gröbner bases. Proc. AAECC 8. Lecture Notes in Computer Science vol. 508. Berlin, Heidelberg, New York: Springer 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to our friend Mario Raimondo

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinari, M.G., Möller, H.M. & Mora, T. Gröbner bases of ideals defined by functionals with an application to ideals of projective points. AAECC 4, 103–145 (1993). https://doi.org/10.1007/BF01386834

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01386834

Keywords

Navigation