Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

An automatic coarse and fine surface mesh generation scheme based on medial axis transform: Part i algorithms

  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present an algorithm for the generation of coarse and fine finite element (FE) meshes on multiply connected surfaces, based on the medial axis transform (MAT). The MAT is employed to automatically decompose a complex shape into topologically simple subdomains, and to extract important shape characteristics and their length scales. Using this technique, we can create a coarse subdivision of a complex surface and select local element size to generate fine triangular meshes within those subregions in an automated manner. Therefore, this approach can lead to integration of fully automatic FE mesh generation functionality into FE preprocessing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blum, H., (1967) A transformation for extracting new descriptors of shape, models for the Perception of Speech and Visual Form, Weinant Wathen-Dunn (Editor), MIT Press, Cambridge, MA, 362–381

    Google Scholar 

  2. Gursoy, H.N., (1989) Shape interrogation by medial axis transform for automated analysis, PhD Dissertation, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  3. Gursoy, H.N., Patrikalakis, N.M., (1992) A coarse and fine element mesh generation scheme based on medial axis transform: Part II implementation, Engineering with Computers, Springer-Verlag, New York

    Google Scholar 

  4. Ho-Le K., (1988) Finite element mesh generation methods: A review and classification, Computer-Aided Design, 20, 1, 27–38

    Google Scholar 

  5. Shephard, M.S., (1988) Approaches to the automatic generation and control of finite element meshes, ASME Applied Mechanics Review, 41, 4, 169–184

    Google Scholar 

  6. Zienkiewicz, O.C., Phillips, D.V., (1971) An automatic mesh generation scheme for plane and curved surfaces by isoparametric coordinates, International Journal for Numerical Methods in Engineering, 7, 461–477

    Google Scholar 

  7. Gordon, W.J., (1973) Construction of curvilinear coordinate systems and applications to mesh generation, International Journal for Numerical Methods in Engineering, 7, 461–477

    Google Scholar 

  8. Cook, W.A., (1974) Body oriented (natural) coordinates for generating three dimensional meshes, International Journal for Numerical Methods in Engineering, 8, 27–43

    Google Scholar 

  9. Herrmann, L.R., (1976) Laplacian-isoparametric grid generation scheme, Journal of Engineering Mechanics Division Proceedings of the ASCE, 102, EM5, 749–756

    Google Scholar 

  10. Imafuku, I., Kodera, Y., Sayawaki, M., (1980) A generalized automatic mesh generation scheme for finite element method, International Journal for Numerical Methods in Engineering, 15, 713–731

    Google Scholar 

  11. Cavendish, J.C., Hall, C.A., (1984) A new class of transitional blended finite elements for analysis of solid structures, International Journal for Numerical Methods in Engineering, 20, 241–253

    Google Scholar 

  12. Wellford, L.C., Gorman, M.R., (1988) A finite element transitional mesh generation procedure using sweeping functions, International Journal for Numerical Methods in Engineering, 26, 2623–2643

    Google Scholar 

  13. Frederick, C.O., Wang, Y.C., Edge, F.W., (1970) Two-dimensional automatic mesh generation for structural analysis, International Journal for Numerical Methods in Engineering, 2, 1, 133–144

    Google Scholar 

  14. Van-Phai, N., (1982) Automatic mesh generation with tetrahedron elements, International Journal for Numerical Methods in Engineering, 18, 273–280

    Google Scholar 

  15. Lee, Y.T., De Pennington, A., Shaw, N.K., (1984) Automatic finite-element mesh generation from geometric model—a point-based approach. ACM Transactions on Graphics, 4, 287–311

    Google Scholar 

  16. Cavendish, J.C., Field, D.A., Frey, W.H., (1985) An approach to automatic three-dimensional finite element mesh generation, International Journal for Numerical Methods in Engineering, 21, 329–347

    Google Scholar 

  17. Lo, S.H., (1985) A new mesh generation scheme for arbitrary planar domains, International Journal for Numerical Methods in Engineering, 21, 8, 1403–1426

    Google Scholar 

  18. Joe, B., (1986) Delaunay triangular meshes in convex polygons, SIAM Journal on Scientific and Statistical Computing, 7, 2, 514–539

    Google Scholar 

  19. Field, D.A., (1986) Implementing Watson's algorithm in three dimensions, Proceedings of the Second Annual ACM Symposium on Computational Geometry, 246–259

  20. Schroeder, W.J., Shephard, M.S., (1988) Geometry-based fully automatic mesh generation and the delaunay triangulation, International Journal for Numerical Methods in Engineering, 26, 2503–2515

    Google Scholar 

  21. Bykal, A., (1976) Automatic generation of triangular grid: I—Subdivision of a general polygon into convex subregions. II—Triangulation of convex polygons, International Journal for Numerical Methods in Engineering, 10, 1329–1324

    Google Scholar 

  22. Sadek, E., (1980) A scheme for the automatic generation of triangular finite elements, International Journal for Numerical Methods in Engineering, 15, 1813–1822

    Google Scholar 

  23. Wordenweber, B., (1984) Finite element analysis for the naive user, Solid Modeling by Computers, From Theory to Applications, Plenum Press, NY., M.S. Pickett, J.W. Boyse (Editors), 81–101

    Google Scholar 

  24. Woo, T.C., Thomasma, T., (1984) An algorithm for generating solid elements in objects with holes, Computers & Structures, 18, 2, 333–342

    Google Scholar 

  25. Joe, B., Simpson, R.B., (1986) Triangular meshes for regions of complicated shape, International Journal for Numerical Methods in Engineering, 23, 5, 751–778

    Google Scholar 

  26. Chae, S.E., (1988) On the automatic generation of nearoptimal meshes for three-dimensional linear elastic finite element analysis, PhD Dissertation, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  27. Yerry, M.A., Shephard, M.S., (1984) Automatic three-dimensional mesh generation by the modified octree technique. International Journal for Numerical Methods in Engineering, 20, 1965–1990

    Google Scholar 

  28. Kela, A., Perucchio, R., Voelcker, H., (1986) Towards automatic finite element analysis, ASME Computers in Mechanical Engineering, 5, 1, 57–71

    Google Scholar 

  29. Baehmann, P.L., Wittchen, S.L., Shephard, M.S., Grice, K.R., Yerry, M.A., (1987) Robust, geometrically based, automatic two-dimensional mesh generation, International Journal for Numerical Methods in Engineering, 24, 8, 1043–1078

    Google Scholar 

  30. Sluiter, M.L.C., Hansen, D.C., (1982) A general purpose automatic mesh generator for shell and solid finite elements, Computers in Engineering, L.E. Hulbert (Editor), ASME, New York, 3, 29–34

    Google Scholar 

  31. Bykat A., (1983) Design of a recursive, shape controlling mesh generator, International Journal for Numerical Methods in Engineering, 19, 9, 1375–1390

    Google Scholar 

  32. Patrikalakis, N.M., Gursoy, H.N., (1988) Skeletons in shape feature recognition for automated analysis, MIT Ocean Engineering Design Laboratory Memorandum 88-4

  33. Patrikalakis, N.M., Gursoy, H.N., (1989) Shape feature recognition by medial axis transform, MIT Ocean Engineering Design Laboratory Memorandum 89-1

  34. Patrikalakis, N.M., Gursoy, H.N., (1990) Shape interrogation by medial axis transform,” Advances in Design Automation 1990, Volume One: Computer Aided and Computational Design, B. Ravani (Editor), ASME, NY, 77–88

    Google Scholar 

  35. Blum, H. (1973) Biological shape and visual science (Part I)” Journal of Theoretical Biology, 38, 205–287

    Google Scholar 

  36. Wolter, F.-E. (1985) Cut loci in bordered and unbordered riemannian manifolds, PhD Dissertation, Technical University of Berlin, Department of Mathematics

  37. Preparata, F.P., Shamos, M.I., (1985) Computational geometry: An introduction, Springer-Verlag, New york

    Google Scholar 

  38. Patrikalakis, N.M., (1989) Approximate conversion of rational splines,” Computer Aided Geometric Design, 2, 6, 155–165

    Google Scholar 

  39. Montanari, U., (1969) Continuous skeletons from digitized images, Journal of the Association for Computing Machinery, 16, 4, 534–549

    Google Scholar 

  40. Srinivasan, V., Nackman, L.R., Tang, J-M, Meshkat, S.N., (1990) Automatic mesh generation using the symmetric axis transformation of polygonal domains, Research Report, IBM Research Division, RC 16132

    Google Scholar 

  41. Babuska, I., Zienkiewicz, O.C., Gago, J., Oliveria, E.R.A., (1986) Accuracy estimates and adaptive refinements in finite element computations, John Wiley, Chichester, England

    Google Scholar 

  42. Mantyla, M., (1988) An Introduction to Solid Modeling, Computer Science Press, Rockville, Maryland

    Google Scholar 

  43. Hoffmann, C.M., (1990) How to construct the skeleton of CSG objects, Technical Report, CSD-TR-1014, Purdue University

  44. Weiler, K.J., (1986) Topological structures for geometric modeling, PhD Dissertation, Rensselaer Polytechnic Institute, Troy, NY

    Google Scholar 

  45. Gursoz, L., Choi, Y. and Prinz, F.B., (1990) Vertex-based representation of non-manifold boundaries, Geometric Modeling for Product Engineering, M.J., Wozny, J.U. Turner and K. Preiss (Editors), North-Holland, NY, 107–130

    Google Scholar 

  46. Rossignac, J.R., O'Connor, M.A., (1990) SGC: A dimension-independent model for pointsets with internal structures and incomplete boundaries, Geometric Modeling for Product Engineering, M.J. Wozny, J.U. Turner and K. Preiss (Editors), North-Holland, NY, 145–180

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nebi Gürsoy, H., Patrikalakis, N.M. An automatic coarse and fine surface mesh generation scheme based on medial axis transform: Part i algorithms. Engineering with Computers 8, 121–137 (1992). https://doi.org/10.1007/BF01200364

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01200364

Keywords

Navigation