Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case

  • Discussion Paper
  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The algorithms and algorithmic ideas currently available for globally optimizing linear functions over the efficient sets of multiple objective linear programs either use nonstandard subroutines or cannot yet be implemented for lack of sufficient development. In this paper a Bisection-Extreme Point Search Algorithm is presented for globally solving a large class of such problems. The algorithm finds an exact, globally-optimal solution after a finite number of iterations. It can be implemented by using only well-known pivoting and optimization subroutines, and it is adaptable to large scale problems or to problems with many local optima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. (1990),Linear Programming and Network Flows, Wiley, New York.

    Google Scholar 

  2. Benson, H. P. (1986), An Algorithm for Optimizing over the Weakly-Efficient Set,European J. of Operational Research 25, 192–199.

    Google Scholar 

  3. Benson, H. P. (1991), An All-Linear Programming Relaxation Algorithm for Optimizing over the Efficient Set,J. of Global Optimization 1, 83–104.

    Google Scholar 

  4. Benson, H. P. (1981), Finding an Initial Efficient Extreme Point for a Linear Multiple Objective Program,J. of the Operational Research Society 32, 495–498.

    Google Scholar 

  5. Benson, H. P. (1992), A Finite, Non-Adjacent Extreme Point Search Algorithm for Optimization over the Efficient Set,J. of Optimization Theory and Applications 73, 47–64.

    Google Scholar 

  6. Benson, H. P. (1981), Optimization over the Efficient Set, Discussion Paper No.35, Center for Econometrics and Decision Sciences, University of Florida, Gainesville, Florida.

    Google Scholar 

  7. Benson, H. P. (1984), Optimization over the Efficient Set,J. of Mathematical Analysis and Applications 98, 562–580.

    Google Scholar 

  8. Bolintineanu, S. (1990), Minimization of a Quasi-Concave Function over an Efficient Set, Mathematics Research Paper No. 90-15, Department of Mathematics, La Trobe University, Bundoora, Victoria, Australia.

    Google Scholar 

  9. Dauer, J. P. (1991), Optimization over the Efficient Set Using an Active Constraint Approach,Zeitschrift für Operations Research 35, 185–195.

    Google Scholar 

  10. Dessouky, M. I., Ghiassi, M., and Davis, W. J. (1986), Estimates of the Minimum Nondominated Criterion Values in Multiple-Criteria Decision-Making,Engineering Costs and Production Economics 10, 95–104.

    Google Scholar 

  11. Ecker, J. G. and Hegner, N. S. (1978), On Computing an Initial Efficient Extreme Point,J. of the Operational Research Society 29, 1005–1007.

    Google Scholar 

  12. Ecker, J. G. and Kouada, I. A. (1978), Finding All Efficient Extreme Points for Multiple Objective Linear Programs,Mathematical Programming 14, 249–261.

    Google Scholar 

  13. Evans, G. W. (1984), An Overview of Techniques for Solving Multiobjective Mathematical Programs,Management Science 30, 1268–1282.

    Google Scholar 

  14. Evans, J. P. and Steuer, R. E. (1973), Generating Efficient Extreme Points in Linear Multiple Objective Programming: Two Algorithms and Computing Experience, in J. L. Cochrane and M. Zeleny (eds.),Multiple Criteria Decision Making, University of South Carolina Press, Columbia, South Carolina, pp. 349–365.

    Google Scholar 

  15. Forgo, F. (1988),Nonconvex Programming, Akademiai Kiado, Budapest.

    Google Scholar 

  16. Horst, R. and Tuy, H. (1990),Global Optimization: Deterministic Approaches, Springer-Verlag, Berlin.

    Google Scholar 

  17. Isermann, H. (1977), The Enumeration of the Set of All Efficient Solutions for a Linear Multiple Objective Program,Operational Research Quarterly 28, 711–725.

    Google Scholar 

  18. Isermann, H. and Steuer, R. E. (1987), Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set,European J. of Operational Research 33, 91–97.

    Google Scholar 

  19. Martos, B. (1965), The Direct Power of Adjacent Vertex Programming Methods,Management Science 12, 241–252.

    Google Scholar 

  20. Murty, K. G. (1983),Linear Programming, Wiley, New York.

    Google Scholar 

  21. Pardalos, P. M. and Rosen, J. B. (1987),Constrained Global Optimization: Algorithms and Applications, Springer-Verlag, Berlin.

    Google Scholar 

  22. Pardalos, P. M. and Rosen, J. B. (1986), Methods for Global Concave Minimization: A Bibliographic Survey,SIAM Review 28, 367–379.

    Google Scholar 

  23. Philip, J. (1972), Algorithms for the Vector Maximization Problem,Mathematical Programming 2, 207–229.

    Google Scholar 

  24. Reeves, G. R. and Reid, R. C. (1988), Minimum Values over the Efficient Set in Multiple Objective Decision Making,European J. of Operational Research 36, 334–338.

    Google Scholar 

  25. Rosenthal, R. E. (1985), Principles of Multiobjective Optimization,Decision Sciences 16, 133–152.

    Google Scholar 

  26. Steuer, R. E. (1986),Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York.

    Google Scholar 

  27. Weistroffer, H. R. (1985), Careful Usage of Pessimistic Values Is Needed in Multiple Objectives Optimization,Operations Research Letters 4, 23–25.

    Google Scholar 

  28. Yu, P. L. (1985),Multiple-Criteria Decision Making, Plenum, New York.

    Google Scholar 

  29. Zeleny, M. (1982),Multiple Criteria Decision Making, McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benson, H.P. A bisection-extreme point search algorithm for optimizing over the efficient set in the linear dependence case. J Glob Optim 3, 95–111 (1993). https://doi.org/10.1007/BF01100242

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01100242

Key words

Navigation