Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Two applications of Weil-Serre's explicit formula

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract

We apply Weil-Serre's explicit formula to produce non-trivial estimates of exponential sums along a curve and of the dual distance of subfield subcodes of algebraic-geometric (AG-)codes. These bounds work while the number of rational points of a curve is large when compared to its genus thus the Weil-Bombieri bound for exponential sums being trivial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bombieri, E.: On exponential sums in finite fields. Am. J. Math.88, 71–106 (1966)

    Google Scholar 

  2. Delsarte, P.: On subfield subcodes of Reed-Solomon codes. IEEE Trans. Info. Theory21, 575–576 (1975)

    Google Scholar 

  3. Garcia, A., Stichtenoth, H.: Elementary abelian-p-extensions of algebraic function fields. Manuscr. Math.72, 67–79 (1991)

    Google Scholar 

  4. van der Geer, G., van Lint, J.H.: Introduction to coding theory and algebraic geometry. Basel: Birkhäuser 1988

    Google Scholar 

  5. Goppa, V.D.: Algebraico-geometric codes. Math USSR Izv.21, 75–91 (1983)

    Google Scholar 

  6. Hansen, J.P., Stichtonoth, H.: Group codes on certain algebraic curves with many rational points AAECC1, 67–77 (1990)

    Google Scholar 

  7. Hansen, J.P., Pedersen, J.P., Automorphism Groups of Ree type, Deligne-Lustig curves and function fields. Aarhus Univers. Preprint Series, N01 (1992)

  8. Hansen J.P.: Deligne-Lusztig varieties and group codes. In: Coding Theory and Algebraic Geometry. Proceedings, Luminy 1991, Springer, 1993 (Lecture notes in Mathematics, 1518)

  9. Lachaud, G.: Artin-Schreier curves, exponential sums, and the Carlitz-Uchiyama bound for geometric codes. J Number Theory 39,1, 18–40 (1991)

    Google Scholar 

  10. Moreno, C-J., Moreno, O.: Exponential sums and Goppa codes, I, Proc. AMS111, 523–531 (1991); II, IEEE Trans. Info. Theory, IT-38, 1222–1229 (1992)

    Google Scholar 

  11. Serre, J-P.: Sur le nombre des points rationnels d'une courbe algebrique sur un corp fini, C.R. Acad. Sci. Paris, Sér. I Math.296, 397–402 (1983)

    Google Scholar 

  12. Serre J-P.: Rational points on curves over finite fields. Harvard Univ., Fall 1985, notes by F.G. Gouvéa

  13. Skorobogatov, A.N.: The parameters of subcodes of algebraic-geometric codes over prime subfields. Discr. Appl. Math.33, 205–214 (1991)

    Google Scholar 

  14. Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes. Dordrecht: Kluwer Academic 1991

    Google Scholar 

  15. Weil, A.: Sur les “formules explicites” de la théorie des nombres premiers. Comm. Lund 252–265 (1952)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partly supported by Russian Fundamental Research Foundation (project N 93-012-458) and by the grant MPN000 from the International Science Foundation

The author is deeply grateful to Mme Aurélia Lozingot for her help in typing of the present paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladut, S.G. Two applications of Weil-Serre's explicit formula. AAECC 7, 279–288 (1996). https://doi.org/10.1007/BF01195533

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01195533

Keywords

Navigation