Abstract
We apply Weil-Serre's explicit formula to produce non-trivial estimates of exponential sums along a curve and of the dual distance of subfield subcodes of algebraic-geometric (AG-)codes. These bounds work while the number of rational points of a curve is large when compared to its genus thus the Weil-Bombieri bound for exponential sums being trivial.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bombieri, E.: On exponential sums in finite fields. Am. J. Math.88, 71–106 (1966)
Delsarte, P.: On subfield subcodes of Reed-Solomon codes. IEEE Trans. Info. Theory21, 575–576 (1975)
Garcia, A., Stichtenoth, H.: Elementary abelian-p-extensions of algebraic function fields. Manuscr. Math.72, 67–79 (1991)
van der Geer, G., van Lint, J.H.: Introduction to coding theory and algebraic geometry. Basel: Birkhäuser 1988
Goppa, V.D.: Algebraico-geometric codes. Math USSR Izv.21, 75–91 (1983)
Hansen, J.P., Stichtonoth, H.: Group codes on certain algebraic curves with many rational points AAECC1, 67–77 (1990)
Hansen, J.P., Pedersen, J.P., Automorphism Groups of Ree type, Deligne-Lustig curves and function fields. Aarhus Univers. Preprint Series, N01 (1992)
Hansen J.P.: Deligne-Lusztig varieties and group codes. In: Coding Theory and Algebraic Geometry. Proceedings, Luminy 1991, Springer, 1993 (Lecture notes in Mathematics, 1518)
Lachaud, G.: Artin-Schreier curves, exponential sums, and the Carlitz-Uchiyama bound for geometric codes. J Number Theory 39,1, 18–40 (1991)
Moreno, C-J., Moreno, O.: Exponential sums and Goppa codes, I, Proc. AMS111, 523–531 (1991); II, IEEE Trans. Info. Theory, IT-38, 1222–1229 (1992)
Serre, J-P.: Sur le nombre des points rationnels d'une courbe algebrique sur un corp fini, C.R. Acad. Sci. Paris, Sér. I Math.296, 397–402 (1983)
Serre J-P.: Rational points on curves over finite fields. Harvard Univ., Fall 1985, notes by F.G. Gouvéa
Skorobogatov, A.N.: The parameters of subcodes of algebraic-geometric codes over prime subfields. Discr. Appl. Math.33, 205–214 (1991)
Tsfasman, M.A., Vladut, S.G.: Algebraic-Geometric Codes. Dordrecht: Kluwer Academic 1991
Weil, A.: Sur les “formules explicites” de la théorie des nombres premiers. Comm. Lund 252–265 (1952)
Author information
Authors and Affiliations
Additional information
Partly supported by Russian Fundamental Research Foundation (project N 93-012-458) and by the grant MPN000 from the International Science Foundation
The author is deeply grateful to Mme Aurélia Lozingot for her help in typing of the present paper.
Rights and permissions
About this article
Cite this article
Vladut, S.G. Two applications of Weil-Serre's explicit formula. AAECC 7, 279–288 (1996). https://doi.org/10.1007/BF01195533
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01195533