Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multivariate Gaussian cubature formulae

  • Published:
Archiv der Mathematik Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. S.Chihara, An Introduction to Orthogonal Polynomials. New York 1978.

  2. G.Freud, Orthogonal Polynomials. Oxford 1971.

  3. S.Karlin and J.McGregor, Some properties of determinants of orthogonal polynomials. In: Theory and Application of Special Functions, R. A. Askey ed., 521–550, New York 1975.

  4. T. H.Koornwinder, Two-variable analogues of the classical orthogonal polynomials. In: Theory and Applications of Special Functions, R. A. Askey ed., 435–495, New York 1975.

  5. H. M. Möller, Kubaturformeln mit minimaler Knotenzahl. Numer. Math.25, 185–200 (1976).

    Google Scholar 

  6. C. R. Morrow andT. N. L. Patterson, Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal.15, 953–976 (1978).

    Google Scholar 

  7. I. P.Mysovskikh, Interpolatory Cubatory Formulas (Russian). Moscow 1981.

  8. J. Radon, Zur mechanischen Kubatur. Monatsh. Math.52, 286–300 (1948).

    Google Scholar 

  9. H. J. Schmid, On cubature formulae with a minimal number of knots. Numer. Math.31, 281–297 (1978).

    Google Scholar 

  10. H. J. Schmid, Interpolatorische Kubaturformeln. Diss. Math.220, 1–122 (1983).

    Google Scholar 

  11. H. J.Schmid and Y.Xu, On bivariate Gaussian curbature formulae. Proc. Amer. Math. Soc., to appear.

  12. H.Weber, Lehrbuch der Algebra, Erster Band. Braunschweig 1912.

  13. Y. Xu, Gaussian cubature and bivariate polynomial interpolation. Math. Comp.59, 547–555 (1992).

    Google Scholar 

  14. Y. Xu, On the zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae. SIAM J. Math. Anal.25, 991–1001 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berens, H., Schmid, H.J. & Xu, Y. Multivariate Gaussian cubature formulae. Arch. Math 64, 26–32 (1995). https://doi.org/10.1007/BF01193547

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01193547

Keywords

Navigation