References
T. S.Chihara, An Introduction to Orthogonal Polynomials. New York 1978.
G.Freud, Orthogonal Polynomials. Oxford 1971.
S.Karlin and J.McGregor, Some properties of determinants of orthogonal polynomials. In: Theory and Application of Special Functions, R. A. Askey ed., 521–550, New York 1975.
T. H.Koornwinder, Two-variable analogues of the classical orthogonal polynomials. In: Theory and Applications of Special Functions, R. A. Askey ed., 435–495, New York 1975.
H. M. Möller, Kubaturformeln mit minimaler Knotenzahl. Numer. Math.25, 185–200 (1976).
C. R. Morrow andT. N. L. Patterson, Construction of algebraic cubature rules using polynomial ideal theory. SIAM J. Numer. Anal.15, 953–976 (1978).
I. P.Mysovskikh, Interpolatory Cubatory Formulas (Russian). Moscow 1981.
J. Radon, Zur mechanischen Kubatur. Monatsh. Math.52, 286–300 (1948).
H. J. Schmid, On cubature formulae with a minimal number of knots. Numer. Math.31, 281–297 (1978).
H. J. Schmid, Interpolatorische Kubaturformeln. Diss. Math.220, 1–122 (1983).
H. J.Schmid and Y.Xu, On bivariate Gaussian curbature formulae. Proc. Amer. Math. Soc., to appear.
H.Weber, Lehrbuch der Algebra, Erster Band. Braunschweig 1912.
Y. Xu, Gaussian cubature and bivariate polynomial interpolation. Math. Comp.59, 547–555 (1992).
Y. Xu, On the zeros of multivariate quasi-orthogonal polynomials and Gaussian cubature formulae. SIAM J. Math. Anal.25, 991–1001 (1994).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Berens, H., Schmid, H.J. & Xu, Y. Multivariate Gaussian cubature formulae. Arch. Math 64, 26–32 (1995). https://doi.org/10.1007/BF01193547
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF01193547