Abstract
This paper shows the equivalence between the family of recognizable languages over infinite traces and the family of languages which are recognized by deterministic asynchronous cellular Muller automata. We thus give a proper generalization of McNaughton's Theorem from infinite words to infinite traces. Thereby we solve one of the main open problems in this field. As a special case we obtain that every closed (w.r.t. the independence relation) word language is accepted by someI-diamond deterministic Muller automaton.
Similar content being viewed by others
References
[Arn85] Arnold, A.: A syntactic congruence for rational ω-languages. Theoret. Comput. Sci.39, 333–335 (1985)
[CF69] Cartier, P., Foata, D.: Problèmes combinatoires de commutation et réarrangements. (Lect. Notes Math., vol. 85) Berlin, Heidelberg, New York: Springer 1969
[CMZ89] Cori, R., Métivier, Y., Zielonka, W.: Asynchronous mappings and asynchronous cellular automata. Tech. rep. 89-97, LABRI, Univ. Bordeaux, 1989
[CP85] Cori, R., Perrin, D.: Automates et commutations partielles. R.A.I.R.O.—Inf. Théor. Appl.19, 21–32 (1985)
[Die90] Diekert, V.: Combinatorics on traces. (Lect. Notes Comput. Sci., vol. 454) Berlin, Heidelberg, New York: Springer 1990
[Die91] Diekert, V.: On the concatenation of infinite traces. In: Choffrut C. et al. (eds.) Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS'91), Hamburg 1991 (Lect. Notes Comput. Sci., vol. 480, pp. 105–117) Berlin, Heidelberg, New York: Springer 1991. Also in Theoret. Comput. Sci.113, 35–54 (1993)
[Gas91] Gastin, P.: Recognizable and rational trace languages of finite and infinite traces. In: Choffrut C. et al. (eds.) Proceedings of the 8th Annual Symposium on Theoretical Aspects of Computer Science (STACS'91), Hamburg 1991 (Lect. Notes Comput. Sci., vol. 480, pp. 89–104) Berlin, Heidelberg, New York: Springer 1991
[GP92] Gastin, P., Petit, A.: Asynchronous cellular automata for infinite traces. In: W. Kuich (ed.) Proceedings of the 19th International Colloquium on Automata Languages and Programming (ICALP'92), Vienna (Austria) 1992 (Lect. Notes Comput. Sci., vol. 623) Berlin, Heidelberg, New York: Springer 1992 Also available as Tech. Rep. 91-68, LITP, Université Paris 6, France, 1991
[GPZ91] Gastin, P., Petit, A., Zielonka, W.: A Kleene theorem for infinite trace languages, In: Albert J.L. et al. (eds.) Proceedings of the 18th International Colloquium on Automata Languages and Programming (ICALP'91), Madrid (Spain) 1991 (Lect. Notes Comput. Sci., vol. 510, pp. 254–266) Berlin, Heidelberg, New York: Springer 1991
[GR91] Gastin, P., Rozoy, B.: The poset of infinitary traces. Tech. Rep. LITP 91.07, Université Paris 6 (France), 1991. Also in Theoret. Comput. Sci.120, 101–121 (1993)
[Kwi90] Kwiatkowska, M.: A metric for traces. Inf. Process. Lett.35, 129–135 (1990)
[Maz77] Mazurkiewicz, A.: Concurrent program schemes and their interpretations. DAIMI Rep. PB 78, Aarhus University, Aarhus, 1977
[Maz87] Mazurkiewicz, A.: Trace theory. In: Brauer, W. et al. (eds.) Petri Nets, Applications and Relationship to other Models of Concurrency (Lect. Notes Comput. Sci., vol. 255, pp. 279–324) Berlin, Heidelberg, New York: Springer 1987
[McN66] McNaughton, R.: Testing and generating infinite sequences by a finite automaton. Inf. Control9, 521–530 (1966)
[PP91] Perrin, D., Pin, J.E.: Mots Infinis. Tech. Rep. LITP 91.06, Université Paris 6 (France), 1992 (Book to appear)
[Tho90] Thomas, W.: Automata on infinite objects. In: van Leeuwen, J. (ed.) Handbook of theoretical computer science, pp. 133–191. Amsterdam: Elsevier 1990
[Zie87] Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O.—Inf. Théor. Appl.21, 99–135 (1987)
[Zie89] Zielonka, W.: Safe executions of recognizable trace languages by asynchronous automata. In: Mayer A.R. et al. (eds.) Proceedings Symposium on Logical Foundations of Computer Science, Logic at Botik '89, Pereslavl-Zalessky (USSR) 1989 (Lect. Notes Comput. Sci., vol. 363, pp. 278–289) Berlin, Heidelberg, New York: Springer 1989
Author information
Authors and Affiliations
Additional information
This research has been supported by the ESPRIT Basic Research Action No. 6317 ASMICS 2.
Rights and permissions
About this article
Cite this article
Diekert, V., Muscholl, A. Deterministic asynchronous automata for infinite traces. Acta Informatica 31, 379–397 (1994). https://doi.org/10.1007/BF01178512
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01178512