Abstract
It is shown that Lax equations associated with dynamical systems on T *Qof the same dimension as Q arise as local expressions of parallelism of a (1,1)-tensor field along the dynamical vector field Γ if the partial connection defined by the symplectic form Ω admissible for a Lagrangian foliation is considered.
Similar content being viewed by others
References
Lax, P.D., Comm. Pure Appl. Math. 21, 467 (1968); SIAM Rev. 18, 351 (1976).
Lutzky, M., Phys. Lett. 87A, 274 (1982); Lett. Nuovo Cimento 35, 393 (1982).
González-Gascón, F., Phys. Lett. 87A, 385 (1982).
González-Gascón, F. and Aguirre-Dabán, E., Phys. Lett. 91A, 384 (1982).
Marmo, G. and Rubano, C., ‘Equivalent Lagrangians and Lax Representations’, Preprint INFN (1983).
Crampin, M., Phys. Lett. 95A, 209 (1983).
DeFilippo, S., Marmo, G., and Vilasi, G., Phys. Lett. 117B, 418 (1982).
Cariñena, J.F. and Ibort, L.A., J. Phys. A16, 1 (1983).
Adler, M., Adv. Math. 38, 267 (1980).
Symes, W.W., Physica 1D, 339 (1980).
Kazdhan, O., Konstant, B. and Sternberg, S., Comm. Pure Appl. Math. 31, 481 (1978).
Weinstein, A., Adv. Math. 6, 329 (1971).
Hector, G. and Hirsch, U., Introduction to the Geometry of Foliations A, Friedr. Vierveg & Sohn, Braunschweig, 1981.
Bott, R., ‘Lectures on Algebraic and Differential Topology’ in Lecture Notes in Math. 279, Springer, 1972.
Rawnsley, J.H., Trans. Amer. Math. Soc. 230, 235 (1977); Proc. Amer. Math. Soc. 73, 391 (1979); Comm. Math. Phys. 58, 1 (1978).
Woodhouse, N., Geometric Quantization, Clarendon Press, Oxford, 1980.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Carinena, J.F., Ibort, L.A. On Lax equations arising from Lagrangian foliations. Lett Math Phys 8, 21–26 (1984). https://doi.org/10.1007/BF00420037
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00420037