Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On Lax equations arising from Lagrangian foliations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that Lax equations associated with dynamical systems on T *Qof the same dimension as Q arise as local expressions of parallelism of a (1,1)-tensor field along the dynamical vector field Γ if the partial connection defined by the symplectic form Ω admissible for a Lagrangian foliation is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lax, P.D., Comm. Pure Appl. Math. 21, 467 (1968); SIAM Rev. 18, 351 (1976).

    Google Scholar 

  2. Lutzky, M., Phys. Lett. 87A, 274 (1982); Lett. Nuovo Cimento 35, 393 (1982).

    Google Scholar 

  3. González-Gascón, F., Phys. Lett. 87A, 385 (1982).

    Google Scholar 

  4. González-Gascón, F. and Aguirre-Dabán, E., Phys. Lett. 91A, 384 (1982).

    Google Scholar 

  5. Marmo, G. and Rubano, C., ‘Equivalent Lagrangians and Lax Representations’, Preprint INFN (1983).

  6. Crampin, M., Phys. Lett. 95A, 209 (1983).

    Google Scholar 

  7. DeFilippo, S., Marmo, G., and Vilasi, G., Phys. Lett. 117B, 418 (1982).

    Google Scholar 

  8. Cariñena, J.F. and Ibort, L.A., J. Phys. A16, 1 (1983).

    Google Scholar 

  9. Adler, M., Adv. Math. 38, 267 (1980).

    Google Scholar 

  10. Symes, W.W., Physica 1D, 339 (1980).

    Google Scholar 

  11. Kazdhan, O., Konstant, B. and Sternberg, S., Comm. Pure Appl. Math. 31, 481 (1978).

    Google Scholar 

  12. Weinstein, A., Adv. Math. 6, 329 (1971).

    Google Scholar 

  13. Hector, G. and Hirsch, U., Introduction to the Geometry of Foliations A, Friedr. Vierveg & Sohn, Braunschweig, 1981.

    Google Scholar 

  14. Bott, R., ‘Lectures on Algebraic and Differential Topology’ in Lecture Notes in Math. 279, Springer, 1972.

  15. Rawnsley, J.H., Trans. Amer. Math. Soc. 230, 235 (1977); Proc. Amer. Math. Soc. 73, 391 (1979); Comm. Math. Phys. 58, 1 (1978).

    Google Scholar 

  16. Woodhouse, N., Geometric Quantization, Clarendon Press, Oxford, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carinena, J.F., Ibort, L.A. On Lax equations arising from Lagrangian foliations. Lett Math Phys 8, 21–26 (1984). https://doi.org/10.1007/BF00420037

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420037

Keywords

Navigation