Abstract
Nonlinear ordinary differential equations with superposition formulas corresponding to the exceptional Lie group G 2ℂ and its two maximal (complex) parabolic subgroups are determined. The G 2-invariance of a third-order skewsymmetric tensor is exploited. The obtained ODEs have polynomial nonlinearities of order 2 in one case and of order 4 in the other.
Similar content being viewed by others
References
LieS. and ScheffersG., Vorlesungen über continuierlichen Gruppen mit geometrischen und anderen Anwendungen Teubner, Leipzig, 1893 (reprinted by Chelsea, New York, 1967).
AndersonR. L., Lett. Math. Phys. 4 1 (1980).
AndersonR. L., HarnadJ., and WinternitzP., Lett. Math. Phys. 5 143 (1981); Physica D4, 164 (1982).
HarnadJ., WinternitzP., and AndersonR. L., J. Math. Phys. 24, 1062 (1983).
ShniderS. and WinternitzP., Lett. Math. Phys. 8, 69 (1981); J. Math. Phys. 25, 3155 (1984).
OgielskiA. T., PrasadM. K., SinhaA., and Chan-WangL. L., Phys. Lett. 91B, 387 (1980).
ZakharovV. E. and ShabatA. B., Funkts. Anal. Pril. 8, 43 (1974); 13, 13 (1979) [Func. Anal. Appl. 8, 226 (1974), 13, 116 (1979)].
ZakharovV. E. and MikhailovA. V., Zh. Eksp. Teor. Fiz. 74, 1953 (1978) [Sov. Phys. JETP 47, 1017 (1978)].
HarnadJ., Saint AubinY., and ShniderS., Commun. Math. Phys. 92, 329 (1984); 93, 33 (1984).
JacobsonN., Lie Algebras, Dover, New York, 1962.
HumphreysJ. E., Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer, New York, 1972.
CartanE., Oeuvres complètes, Gauthier-Villars, Paris, 1952.
CvitanovicP., Phys. Rev. D14, 1536 (1976).
BeckersJ., HarnadJ., PerroudM., and WinternitzP., J. Math. Phys. 19, 2126 (1978).
Author information
Authors and Affiliations
Additional information
Supported in part by ‘Les accords culturels Québec-Belgique 1985’.
Chargé de recherches FNRS.
Rights and permissions
About this article
Cite this article
Beckers, J., Hussin, V. & Winternitz, P. Complex parabolic subgroups of G 2 and nonlinear differential equations. Lett Math Phys 11, 81–86 (1986). https://doi.org/10.1007/BF00417468
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00417468