Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Complex parabolic subgroups of G 2 and nonlinear differential equations

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Nonlinear ordinary differential equations with superposition formulas corresponding to the exceptional Lie group G 2ℂ and its two maximal (complex) parabolic subgroups are determined. The G 2-invariance of a third-order skewsymmetric tensor is exploited. The obtained ODEs have polynomial nonlinearities of order 2 in one case and of order 4 in the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LieS. and ScheffersG., Vorlesungen über continuierlichen Gruppen mit geometrischen und anderen Anwendungen Teubner, Leipzig, 1893 (reprinted by Chelsea, New York, 1967).

    Google Scholar 

  2. AndersonR. L., Lett. Math. Phys. 4 1 (1980).

    Google Scholar 

  3. AndersonR. L., HarnadJ., and WinternitzP., Lett. Math. Phys. 5 143 (1981); Physica D4, 164 (1982).

    Google Scholar 

  4. HarnadJ., WinternitzP., and AndersonR. L., J. Math. Phys. 24, 1062 (1983).

    Google Scholar 

  5. ShniderS. and WinternitzP., Lett. Math. Phys. 8, 69 (1981); J. Math. Phys. 25, 3155 (1984).

    Google Scholar 

  6. OgielskiA. T., PrasadM. K., SinhaA., and Chan-WangL. L., Phys. Lett. 91B, 387 (1980).

    Google Scholar 

  7. ZakharovV. E. and ShabatA. B., Funkts. Anal. Pril. 8, 43 (1974); 13, 13 (1979) [Func. Anal. Appl. 8, 226 (1974), 13, 116 (1979)].

    Google Scholar 

  8. ZakharovV. E. and MikhailovA. V., Zh. Eksp. Teor. Fiz. 74, 1953 (1978) [Sov. Phys. JETP 47, 1017 (1978)].

    Google Scholar 

  9. HarnadJ., Saint AubinY., and ShniderS., Commun. Math. Phys. 92, 329 (1984); 93, 33 (1984).

    Google Scholar 

  10. JacobsonN., Lie Algebras, Dover, New York, 1962.

    Google Scholar 

  11. HumphreysJ. E., Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer, New York, 1972.

    Google Scholar 

  12. CartanE., Oeuvres complètes, Gauthier-Villars, Paris, 1952.

    Google Scholar 

  13. CvitanovicP., Phys. Rev. D14, 1536 (1976).

    Google Scholar 

  14. BeckersJ., HarnadJ., PerroudM., and WinternitzP., J. Math. Phys. 19, 2126 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by ‘Les accords culturels Québec-Belgique 1985’.

Chargé de recherches FNRS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckers, J., Hussin, V. & Winternitz, P. Complex parabolic subgroups of G 2 and nonlinear differential equations. Lett Math Phys 11, 81–86 (1986). https://doi.org/10.1007/BF00417468

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00417468

Keywords

Navigation