Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Asynchronous gradient algorithms for a class of convex separable network flow problems

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We consider the single commodity strictly convex network flow problem. The dual of this problem is unconstrained, differentiable, and well suited for solution via distributed or parallel iterative methods. We present and prove convergence of gradient and asynchronous gradient algorithms for solving the dual problem. Computational results are given and analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H.Barlow and D.J.Evans, “Synchronous and asynchronous iterative parallel algorithms for linear systems,” Comput. J., vol. 25, pp. 56–60, 1982.

    Google Scholar 

  2. G.M.Baudet, “Asynchronous iterative methods for multiprocessors,” J. Assoc. Comput. Mach., vol. 2, pp. 226–244, 1978.

    Google Scholar 

  3. D.P.Bertsekas, “Distributed dynamic programming,” IEEE Trans. Auto. Contr., vol. AC-27, pp. 610–616, 1982.

    Google Scholar 

  4. D.P.Bertsekas, “Distributed asynchronous computation of fixed points” Mathematical Programming, vol. 27, pp. 107–120, 1983.

    Google Scholar 

  5. D.P.Bertsekas and D.A.Castñon, “Parallel asynchronous primal-dual methods for the minimum cost flow problem,” Report LIDS-P-1998, Department of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA, 1990.

    Google Scholar 

  6. D.P.Bertsekas and D.A.Castañon, “Parallel synchronous and asynchronous implementation of the auction algorithm,” Parallel Computing, vol. 17, pp. 707–732, 1991.

    Google Scholar 

  7. D.P.Bertsekas and D.A.Castañon, J.Eckstein, and S.Zenios, “Parallel computing in network optimization,” Report LIDS-P-2236, Department of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA, 1994, to appear in Handbook on Operation Research and Management Science.

    Google Scholar 

  8. D.P.Bertsekas and D.ElBaz, “Distributed asynchronous relaxation methods for convex network flow problems,” SIAM J. on Control and Optimization, vol. 25, pp. 74–85, 1987.

    Google Scholar 

  9. D.P.Bertsekas and J.Tsitsiklis, Parallel and Distributed Computation, Numerical Methods, Prentice Hall, Englewood Cliffs, N.J., 1989.

    Google Scholar 

  10. D.P.Bertsekas, P.Hossein, and P.Tseng, “Relaxation methods for network flow problems with convex arc costs,” SIAM Journal on Control and Optimization vol. 25, pp. 1219–1243, 1987.

    Google Scholar 

  11. Y.Censor and A.Lent, “An iterative row-action method for interval convex programming,” Journal of Optimization Theory and Applications, vol. 34, pp. 321–353, 1981.

    Google Scholar 

  12. Y.Censor and J.Segman, “On block-iterative entropy maximization,” Journal of Information and Optimization Sciences, vol. 8, pp. 275–291, 1987.

    Google Scholar 

  13. E.Chajakis and S.A.Zenios, “Synchronous and asynchronous implementations of relaxation algorithms for nonlinear network optimization,” Parallel Computing, vol. 17, pp. 873–894, 1991.

    Google Scholar 

  14. D.Chazan and W.Miranker, “Chaotic relaxation,” Linear Algebra Appl., vol. 2, pp. 199–222, 1969.

    Google Scholar 

  15. R.DeLeone and O.L.Mangasarian, “Asynchronous parallel successive overrelaxation for the symmetric linear complementarity problem,” Mathematical Programming, vol. B42, pp. 117–128, 1971.

    Google Scholar 

  16. J.D.P.Donnely, “Periodic chaotic relaxation,” Linear Algebra Appl., vol. 4, pp. 117–128, 1971.

    Google Scholar 

  17. D.ElBaz, “M-functions and parallel asynchronous algorithms,” SIAM Journal on Numerical Analysis, vol. 27, pp. 136–140, 1990.

    Google Scholar 

  18. D.ElBaz, “Asynchronous implementation of relaxation and gradient algorithms for convex network flow problems,” Parallel Computing, vol. 19, pp. 1019–1028, 1993.

    Google Scholar 

  19. D.ElBaz, “Nonlinear systems of equations and parallel asynchronous iterative algorithms,” in Advances in Parallel Computing 9, Parallel Computing: Trends and Application, North Holland, Amsterdam, 1994, G.R.Joubert et al. (Eds.), pp. 89–96.

    Google Scholar 

  20. D. El Baz, P. Spiteri, and J.C. Miellou, “Distributed asynchronous iterative methods with oder intervals for a class of nonlinear network flow problems,” LAAS Report 94244, June 1994.

  21. M.N.ElTarazi, “Some convergence results for asynchronous algorithms,” Numerisch Mathematik, vol. 39, pp. 325–340, 1982.

    Google Scholar 

  22. S.Li and T.Basar, “Asymptotic agreement and convergence of asynchronous stochastic algorithms,” IEEE Trans. Auto. Contr., vol. AC- 32, pp. 612–618, 1987.

    Google Scholar 

  23. B.Lubachevsky and D.Mitra, “A chaotic asynchronous algorithm for computing the fixed point of nonnegative matrix of unit spectral radius,” J. Assoc. Comput. Mach., vol. 33, pp. 130–150, 1986.

    Google Scholar 

  24. J.C.Miellou, “Algorithmes de relaxation chaotique à retards,” R.A.I.R.O., R-1, pp. 55–82, 1975.

    Google Scholar 

  25. J.C.Miellou, “Itérations chaotiques à retards, étude de la convergence dans le cas d'espaces partiellement ordonnés,” C.R.A.S. Paris, vol. 280, pp. 233–236, 1975.

    Google Scholar 

  26. J.C. Miellou, “Asynchronous iterations and order intervals,” in Parallel Algorithms and Architectures, M. Cosnard (Ed.), North Holland, 1986, pp. 85–96.

  27. J.C.Miellou and P.Spiteri, “Two criteria for the convergence of asynchronous iterations,” in Computers and Computing, P.Chenin, C.diCrescenzo, and F.Robert (Eds.), Wiley-Masson, Paris 1985, pp. 91–95.

    Google Scholar 

  28. D.Mitra, “Asynchronous relaxations for the numerical solution of differential equations by parallel processors,” SIAM J. Sci. Stat. Comput., vol. 8, pp. 43–58, 1987.

    Google Scholar 

  29. S. Nielsen and S.A. Zenios, “Massively parallel algorithms for singly constrained convex programs,” ORSA Journal on Computing, vol. 4, 1992.

  30. R.T.Rockafellar, Convex Analysis, Princeton University Press: Princeton, New Jersey, 1970.

    Google Scholar 

  31. R.T.Rockafellar, Network Flows and Monotropic Optimization, John Wiley & Sons: New York, 1984.

    Google Scholar 

  32. S.A.Zenios and R.A.Lasken, “Nonlinear network optimization on a massively parallel Connection Machine,” Annals of Operation Research, vol. 14, pp. 147–166, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baz, D.E. Asynchronous gradient algorithms for a class of convex separable network flow problems. Comput Optim Applic 5, 187–205 (1996). https://doi.org/10.1007/BF00248264

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00248264

Keywords

Navigation