Summary
Developments based on a topological analysis approach of electron density maps are presented and applied to two different fields: the interpretation of electron density maps of proteins and the description of shape complementarity between a cyclodextrin host and a guest molecule. A global representation of the electron density distribution, through the location, identification and linkage of its critical points (points where the gradient of the density vanishes, i.e., peaks and passes), is generated using the program ORCRIT. On one hand, the interpretation of protein electron density maps is based on similarity evaluations between graphs of critical points and known structures. So far, the method has been applied to 3 Å resolution maps for the recognition of secondary structure motifs using a procedure relevant to expert systems in artificial intelligence. Satisfying matches between critical point graphs and their corresponding protein structure depict the ability of the topological analysis to catch the essential secondary structural features in electron density maps. On the other hand, mapping the accessible volume of a host molecule is achieved by representing the peaks as ellipsoids with axes related to local curvature of the electron density function. Related energies of the interacting species can also be estimated. A qualitative comparison is made between the results generated by the topological analysis and energy values obtained by conventional molecular mechanics calculations. A positive comparison and a close complementarity between cyclodextrin and ligands shows that the topological analysis method gives a good representation of the electron density function.
Similar content being viewed by others
References
Johnson, C.K., In Proceedings of the American Crystallographic Association Meeting, Evanston, IL, 1976, abstract B1.
Johnson, C.K., In Proceedings of the American Crystallographic Association Meeting, Asilomar, CA, 1977, abstract JQ6.
Johnson, C.K., ORCRIT: The Oak Ridge Critical Point Network Program, Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN, 1977.
Terry, A., Ph.D. Thesis, Stanford University, Stanford, CA, 1983.
Leherte, L., Fortier, S., Glasgow, J.I. and Allen, F.H., Acta Crystallogr., D50 (1994) 155.
Leherte, L. and Allen, F.H., J. Comput.-Aided Mol. Design, 8 (1994) 257.
Mezey, P.G., J. Comput. Chem., 8 (1987) 462.
Mezey, P.G., In Johnson, M.A. and Maggiora, G.M. (Eds.) Concepts and Applications of Molecular Similarity, Wiley, New York, NY, 1990, pp. 321–368.
Hodgkin, E.E. and Richards, W.G., Int. J. Quantum Chem., Quantum Biol. Symp., 14 (1987) 105.
Good, A.C., J. Mol. Graphics, 10 (1992) 144.
Cioslowski, J. and Fleishmann, E.D., J. Am. Chem. Soc., 113 (1994) 64.
Mestres, J., Sola, M., Duran, M. and Carbo, R., J. Comput. Chem., 15 (1994) 1113.
Greer, J., J. Mol. Biol., 82 (1974) 279.
Greer, J., J. Mol. Biol., 100 (1976) 427.
Jones, T.A., Zou, J.Y., Cowan, S.W. and Kjeldgaard, M., Acta Crystallogr., A47 (1991) 110.
Marr, D., Vision, W.H. Freeman, San francisco, CA, 1982.
Richard, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.
Connolly, M.L., J. Appl. Crystallogr., 16 (1983) 548.
Del, Carpio, C.A., Takahashi, Y. and Sasaki, S.-I., J. Mol. Graphics, 11 (1993) 23.
Santavy, M. and Kypr, J., J. Mol. Graphics, 2 (1984) 47.
Arteca, G.A. and Mezey, P.G., J. Comput. Chem., 9 (1988) 554.
Lin, S.L., Nussinov, R., Fischer, D. and Wolfson, H., Protein Struct. Funct. Genet., 18 (1994) 94.
Leicester, S., Finney, J. and Bywater, R., J. Math. Chem., 16 (1994) 315.
Leicester, S., Finney, J. and Bywater, R., J. Math. Chem., 16 (1994) 343.
Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.
Grootenhuis, P.D.J., Rae, D.C., Kollman, P.A. and Kuntz, I.D., J. Comput.-Aided Mol. Design, 8 (1994) 731.
Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R. and Watson, D.G., Acta Crystallogr., B35 (1979) 2331.
Allen, F.H., Kennard, O. and Taylor, R., Acc. Chem. Res., 16 (1983) 146.
Smith, V.H., Price, P.F. and Absar, I., Isr. J. Chem., 16 (1977) 187.
Howard, S.T., Hursthouse, M.B., Lehman, C.W., Mallinson, P.R. and Frampton, C.S., J. Chem. Phys., 97 (1992) 5616.
Bader, R.W., Atoms in Molecules-A Quantum Theory, Clarendon, Oxford, 1990.
Johnson, C.K., In Proceedings of the American Crystallographic Association Meeting, Pittsburgh, PA, 1992, abstract PA99.
Popelier, P.L.A., Theor. Chim. Acta, 87 (1994) 465.
Shirsat, R.N., Bapat, S.V. and Gadre, S.R., Chem. Phys. Lett., 200 (1992) 373.
Gadre, S.R. and Shrivactava, I.H., Chem. Phys. Lett., 204 (1993) 350.
Glasgow, J.I., Fortier, S. and Allen, F.H., In Hunter, L. (Ed.) Artificial Intelligence and Molecular Biology, AAAI Press, Menlo Park, CA, 1993, pp. 433–458.
Fortier, S., Castleden, I., Glasgow, J.I., Conklin, D., Walmsley, C., Leherte, L. and Allen, F.H., Acta Crystallogr., D49 (1993) 168.
Butzlaff, M., Dahmen, W., Diekmann, S., Dress, A., Schmitt, E. and von, Kitzing, E., J. Math. Chem., 15 (1994) 77.
Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.
Hall, S.R. and Stewart, J.M. (Eds.) Xtal 3.0 Reference Manual, Universities of Western Australia, Nedlands, and Maryland, College Park, MD, 1990.
Leherte, L., Baxter, K., Glasgow, J.I. and Fortier, S., In Altman, R., Brutlag, D., Karp, P., Lathrop, R. and Searls, D., Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, MIT/AAAI Press, Menlo Park, CA, 1994, pp. 261–268.
Rich, E. and Knight, K., Artificial Intelligence, McGraw-Hill, New York, NY, 1991.
Patterson, D.W., Introduction to Artificial Intelligence and Expert Systems, Prentice Hall, Englewood Cliffs, NJ, 1990.
Hutchinson, S.A., Cromwell, R.L. and Kak, A.C., In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, 1989, pp. 541–548.
Grant, J.A. and Pickup, B.T., J. Phys. Chem., 99 )1995) 3503.
Leherte, L., Latour, Th. and Vercauteren, D.P., Supramol. Sci., in press.
Lipkowitz, K.B., Green, K.M., Yang, J.-A., Pearl, G. and Peterson, M.A., Chirality, 5 (1993) 51.
Discover, User Guide Parts I, II and III, v. 94.0, Biosym Technologies, San Diego, CA, 1994.
InsightII, User Guide Parts I and II, v. 2.3.0, Biosym Technologies, San Diego, CA, 1993.
Maple, J.R., Dinur, U. and Hagler, A.T., Proc. Natl. Acad. Sci. USA, 85 (1988) 5350.
Waldman, M. and Hagler, A.T., J. Comput. Chem., 14 (1993) 1077.
Maple, J.R., Hwang, M.J., Stockfish, T.P., Dinur, U., Waldman, M., Ewig, C.S. and Hagler, A.T., J. Comput. Chem., 15 (1994) 162.
Mezey, P.G., J. Math. Chem., 7 (1991) 39.
Meyer, A.Y. and Richards, W.G., J. Comput.-Aided Mol. Design, 5 (1991) 427.
Zabrodsky, H. and Avnir, D., J. Am. Chem. Soc., 117 (1995) 462.
Meyer, Y., Wavelets-Algorithms & Applications, SIAM, Philadelphia, PA, 1993.
Author information
Authors and Affiliations
Additional information
This paper is based on a presentation given at the 14th Molecular Graphics and Modelling Society Conference, held in Cairns, Australia, August 27-September 1, 1995.
Rights and permissions
About this article
Cite this article
Leherte, L., Latour, T. & Vercauteren, D.P. Similarity and complementarity of molecular shapes: Applicability of a topological analysis approach. J Computer-Aided Mol Des 10, 55–66 (1996). https://doi.org/10.1007/BF00124465
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00124465