Abstract
Conceptual clustering is an important way of summarizing and explaining data. However, the recent formulation of this paradigm has allowed little exploration of conceptual clustering as a means of improving performance. Furthermore, previous work in conceptual clustering has not explicitly dealt with constraints imposed by real world environments. This article presents COBWEB, a conceptual clustering system that organizes data so as to maximize inference ability. Additionally, COBWEB is incremental and computationally economical, and thus can be flexibly applied in a variety of domains.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Brachman, R. J. (1985). I lied about the trees. AI Magazine, 6, 80–93.
Carbonell, J. G., & Hood, G. (1986). The World Modelers Project: Objectives and simulator architecture. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: A guide to current research. Boston, MA: Kluwer.
Cheeseman, P. (1985). In defense of probability. Proceedings of the Ninth International Joint Conference on Artificial Intelligence (pp. 1002–1009). Los Angeles, CA: Morgan Kaufmann.
Cheng, Y., & Fu, K. (1985). Conceptual clustering in knowledge organization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7, 592–598.
Clancey, W. J. (1984). Classification problem solving. Proceedings of the National Conference on Artificial Intelligence (pp. 49–55). Austin, TX: Morgan Kaufmann.
Dietterich, T. G. (1982). Learning and inductive inference. In P. R.Cohen & E. A.Feigenbaum (Eds.), The handbook of artificial intelligence. Los Altos, CA: Morgan Kaufmann.
Dietterich, T. G., & Michalski, R. S. (1983). A comparative review of selected methods of learning from examples. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.
Everitt, B. (1980). Cluster analysis. London: Heinemann Educational Books.
Feigenbaum, E. A., & Simon, H. A. (1984). EPAM-like models of recognition and learning. Cognitive Science, 8, 305–336.
Fisher, D. H. (1985). A hierarchical conceptual clustering algorithm (Technical Report 85–21). Irvine, CA: University of California, Department of Information and Computer Science.
Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Doctoral dissertation, Department of Information and Computer Science, University of California, Irvine.
Fisher, D. H., & Langley, P. (1985). Approaches to conceptual clustering. Proceedings of the Ninth International Conference on Artificial Intelligence (pp. 691–697). Los Angeles, CA: Morgan Kaufmann.
Fisher, D., & Langley, P. (1986). Methods of conceptual clustering and their relation to numerical taxonomy. In W.Gale (Ed.), Artificial intelligence and statistics. Reading, MA: Addison-Wesley.
Fu, L., & Buchanan, B. G. (1985). Learning intermediate concepts in constructing a hierarchical knowledge base. Proceedings of the Ninth International Joint Conference on Artificial Intelligence (pp. 659–666). Los Angeles, CA: Morgan Kaufmann.
Gennari, J. H., Langley, P., & Fisher, D. H. (1987). Models of incremental concept formation (Technical Report). Irvine, CA: University of California, Department of Information and Computer Science.
Gluck, M. A., & Corter, J. E. (1985). Information, uncertainty, and the utility of categories. Proceedings of the Seventh Annual Conference of the Cognitive Science Society (pp. 283–287). Irvine, CA: Lawrence Erlbaum Associates.
Hanson, S. J., & Bauer, M. (1986). Machine learning, clustering, and polymorphy. In L. N.Kanal & J. F.Lemmer (Eds.), Uncertainty in artificial intelligence. Amsterdam: North-Holland.
Kolodner, J. L. (1983). Reconstructive memory: A computer model. Cognitive Science, 7, 281–328.
Langley, P., & Carbonell, J. G. (1984). Approaches to machine learning. Journal of the American Society for Information Science, 35, 306–316.
Langley, P., Kibler, D., & Granger, R. (1986). Components of learning in a reactive environment. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: A guide to current research. Boston, MA: Kluwer.
Langley, P., & Sage, S. (1984). Conceptual clustering as discrimination learning. Proceedings of the Fifth Biennial Conference of the Canadian Society for Computational Studies of Intelligence (pp. 95–98). London, Ontario, Canada.
Lebowitz, M. (1982). Correcting erroneous generalizations. Cognition and Brain Theory, 5, 367–381.
Lebowitz, M. (1986a). Concept learning in a rich input domain: Generalization-based memory. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.
Lebowitz, M. (1986b). Integrated learning: Controlling explanation. Cognitive Science, 10, 219–240.
Medin, D. L., Wattenmaker, W. D., & Michalski, R. S. (1986). Constraints and preferences in inductive learning: An experimental study comparing human and machine performance (Technical Report ISG 86–1). Urbana, IL: University of Illinois, Department of Computer Science.
Mervis, C. B., & Rosch, E. (1981). Categorization of natural objects. Annual Review of Psychology, 32, 89–115.
Michalski, R. S. (1980). Knowledge acquisition through conceptual clustering: A theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems, 4, 219–243.
Michalski, R. S., & Stepp, R. E. (1983). Learning from observation: Conceptual clustering. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.
Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203–226.
Pearl, J. (1985). Learning hidden causes from empirical data. Proceedings of the Ninth International Joint Conference on Artificial Intelligence (pp. 567–572). Los Angeles, CA: Morgan Kaufmann.
Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess end games. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: An artificial intelligence approach. Los Altos, CA: Morgan Kaufmann.
Reinke, R., & Michalski, R. S. (1986). Incremental learning of concept descriptions. Machine intelligence (Vol. 11). Oxford University Press.
Rendell, L. (1986). A general framework for induction and a study of selective induction. Machine Learning, 1, 177–226.
Sammut, C., & Hume, D. (1986). Learning concepts in a complex robot world. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: A guide to current research. Boston, MA: Kluwer.
Schlimmer, J. C., & Fisher, D. H. (1986). A case study of incremental concept induction. Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 496–501). Philadelphia, PA: Morgan Kaufmann.
Schlimmer, J. C., & Granger, R. H. (1986). Beyond incremental processing: Tracking concept drift. Proceedings of the Fifth National Conference on Artificial Intelligence (pp. 502–507). Philadelphia, PA: Morgan Kaufmann.
Simon, H. A. (1969). The sciences of the artificial. Cambridge, MA: MIT Press.
Smith, E. E., & Medin, D. L. (1981). Categories and concepts. Cambridge, MA: Harvard University Press.
Stepp, R. E. (1984). Conjunctive conceptual clustering: A methodology and experimentation (Technical Report UIUCDCS-R-84-1189). Doctoral dissertation, Department of Computer Science, University of Illinois, Urbana.
Stepp, R. E., & Michalski, R. S. (1986). Conceptual clustering: Inventing goal-directed classifications of structured objects. In R. S.Michalski, J. G.Carbonell, & T. M.Mitchell (Eds.), Machine learning: An artificial intelligence approach (Vol. 2). Los Altos, CA: Morgan Kaufmann.
Vere, S. A. (1978). Inductive learning of relational productions. In D.Waterman & F.Hayes-Roth (Eds.), Pattern-directed inference systems. Orlando, FL: Academic Press.
Winston, P. H. (1975). Learning structural descriptions from examples. In P. H.Winston (Ed.), The psychology of computer vision. New York: McGraw-Hill.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Fisher, D.H. Knowledge acquisition via incremental conceptual clustering. Mach Learn 2, 139–172 (1987). https://doi.org/10.1007/BF00114265
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00114265