Abstract
In this paper, two design procedures for sigmoid function using exponential function have been proposed implementing division operation and feedback methodology. Hyperbolic tangent function has also been synthesized using the later. All the proposed circuits along with their building blocks have been implemented using current mode device Operational Transconductance Amplifier (OTA). Sensitivities of the circuit and process parameters on the output have been calculated. Performances of all synthesized circuits have been verified with SPICE simulation, establishing the effectiveness of the proposed methodology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhanja, M., Ray, B.N.: OTA-based logarithmic circuit for arbitrary input signal and its application. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(2), 638–649 (2016). https://doi.org/10.1109/TVLSI.2015.2406953
Zhang, M., Vassiliadis, S., Delgado-Frias, J.G.: Sigmoid generators for neural computing using piecewise approximations. IEEE Trans. Comput. 45(9), 1045–1049 (1996). https://doi.org/10.1109/12.537127
Tsai, C.-H., Chih, Y.-T., Wong, W.H., Lee, C.-Y.: A hardware-efficient sigmoid function with adjustable precision for a neural network system. IEEE Trans. Circ. Syst. II Exp. Briefs 62(11), 1073–1077 (2015). https://doi.org/10.1109/TCSII.2015.2456531
Yamanashi, Y., Umeda, K., Yoshikawa, N.: Pseudo sigmoid function generator for a superconductive neural network. IEEE Trans. Appl. Supercond. 23(3) (2013). https://doi.org/10.1109/TASC.2012.2228531
Basterretxea, K., Tarela, J.M., Del Campo, I.: Approximation of sigmoid function and the derivative for hardware implementation of aftificial neurons. IEE Proc.-Circ. Devices Syst. 151(1), 18–24 (2004). https://doi.org/10.1049/ip-cds:20030607
Basterretxea, K., Tarela, J.M., Campo, I.D., Bosque, G.: An experimental study on nonlinear function computation for neural/fuzzy hardware design. IEEE Trans. Neural Netw. 18(1), 266–283 (2007). https://doi.org/10.1109/TNN.2006.884680
Khodabandehloo, G., Mirhassani, M., Ahmadi, M.: Analog implementation of a novel resistive-type sigmoidal neuron. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(4), 750–754 (2012). https://doi.org/10.1109/TVLSI.2011.2109404
Pan, S.P., Li, Z., Huang, Y.J., Lin, W.C.: FPGA realization of activation function for neural network. In: 2018 7th International Symposium on Next Generation Electronics (ISNE), pp. 1–2. IEEE (2018). https://doi.org/10.1109/ISNE.2018.8394695
Sharma, S.K., Chandra, P.: An adaptive sigmoidal activation function cascading neural networks. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) SOCO 2011. Advances in Intelligent and Soft Computing, vol. 87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19644-7_12
Zhang, L.: Implementation of fixed-point neuron models with threshold, ramp and sigmoid activation functions. In 4th International Conference on Mechanics and Mechatronics Research (ICMMR 2017). IOP Conference Series: Materials Science and Engineering, vol. 224, p. 012054 (2017). https://doi.org/10.1088/1757-899X/224/1/012054
Zamanlooy, B., Mirhassani, M.: Efficient VLSI implementation of neural networks with hyperbolic tangent activation function. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(1), 39–48 (2014). https://doi.org/10.1109/TVLSI.2012.2232321
Robles, M.C., Serrano, L.: A novel CMOS current-mode fully differential tanh (x) implementation. In: IEEE International Symposium on Circuits and Systems 2008, pp. 2158–2161 (2008). https://doi.org/10.1109/ISCAS.2008.4541878
Sanchez-Sinencio, E., Silva-Martinez, J.: CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc. Circ. Devices Syst. 147(1), 3–12 (2000). https://doi.org/10.1049/ip-cds:20000055
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Datta, D., Agarwal, S., Kumar, V., Raj, M., Ray, B., Banerjee, A. (2019). Design of Current Mode Sigmoid Function and Hyperbolic Tangent Function. In: Sengupta, A., Dasgupta, S., Singh, V., Sharma, R., Kumar Vishvakarma, S. (eds) VLSI Design and Test. VDAT 2019. Communications in Computer and Information Science, vol 1066. Springer, Singapore. https://doi.org/10.1007/978-981-32-9767-8_5
Download citation
DOI: https://doi.org/10.1007/978-981-32-9767-8_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-32-9766-1
Online ISBN: 978-981-32-9767-8
eBook Packages: Computer ScienceComputer Science (R0)