Nothing Special   »   [go: up one dir, main page]

Skip to main content

Design of Current Mode Sigmoid Function and Hyperbolic Tangent Function

  • Conference paper
  • First Online:
VLSI Design and Test (VDAT 2019)

Abstract

In this paper, two design procedures for sigmoid function using exponential function have been proposed implementing division operation and feedback methodology. Hyperbolic tangent function has also been synthesized using the later. All the proposed circuits along with their building blocks have been implemented using current mode device Operational Transconductance Amplifier (OTA). Sensitivities of the circuit and process parameters on the output have been calculated. Performances of all synthesized circuits have been verified with SPICE simulation, establishing the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhanja, M., Ray, B.N.: OTA-based logarithmic circuit for arbitrary input signal and its application. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(2), 638–649 (2016). https://doi.org/10.1109/TVLSI.2015.2406953

    Article  Google Scholar 

  2. Zhang, M., Vassiliadis, S., Delgado-Frias, J.G.: Sigmoid generators for neural computing using piecewise approximations. IEEE Trans. Comput. 45(9), 1045–1049 (1996). https://doi.org/10.1109/12.537127

    Article  MATH  Google Scholar 

  3. Tsai, C.-H., Chih, Y.-T., Wong, W.H., Lee, C.-Y.: A hardware-efficient sigmoid function with adjustable precision for a neural network system. IEEE Trans. Circ. Syst. II Exp. Briefs 62(11), 1073–1077 (2015). https://doi.org/10.1109/TCSII.2015.2456531

    Article  Google Scholar 

  4. Yamanashi, Y., Umeda, K., Yoshikawa, N.: Pseudo sigmoid function generator for a superconductive neural network. IEEE Trans. Appl. Supercond. 23(3) (2013). https://doi.org/10.1109/TASC.2012.2228531

    Article  Google Scholar 

  5. Basterretxea, K., Tarela, J.M., Del Campo, I.: Approximation of sigmoid function and the derivative for hardware implementation of aftificial neurons. IEE Proc.-Circ. Devices Syst. 151(1), 18–24 (2004). https://doi.org/10.1049/ip-cds:20030607

    Article  Google Scholar 

  6. Basterretxea, K., Tarela, J.M., Campo, I.D., Bosque, G.: An experimental study on nonlinear function computation for neural/fuzzy hardware design. IEEE Trans. Neural Netw. 18(1), 266–283 (2007). https://doi.org/10.1109/TNN.2006.884680

    Article  Google Scholar 

  7. Khodabandehloo, G., Mirhassani, M., Ahmadi, M.: Analog implementation of a novel resistive-type sigmoidal neuron. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(4), 750–754 (2012). https://doi.org/10.1109/TVLSI.2011.2109404

    Article  Google Scholar 

  8. Pan, S.P., Li, Z., Huang, Y.J., Lin, W.C.: FPGA realization of activation function for neural network. In: 2018 7th International Symposium on Next Generation Electronics (ISNE), pp. 1–2. IEEE (2018). https://doi.org/10.1109/ISNE.2018.8394695

  9. Sharma, S.K., Chandra, P.: An adaptive sigmoidal activation function cascading neural networks. In: Corchado, E., Snášel, V., Sedano, J., Hassanien, A.E., Calvo, J.L., Ślȩzak, D. (eds.) SOCO 2011. Advances in Intelligent and Soft Computing, vol. 87. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19644-7_12

    Chapter  Google Scholar 

  10. Zhang, L.: Implementation of fixed-point neuron models with threshold, ramp and sigmoid activation functions. In 4th International Conference on Mechanics and Mechatronics Research (ICMMR 2017). IOP Conference Series: Materials Science and Engineering, vol. 224, p. 012054 (2017). https://doi.org/10.1088/1757-899X/224/1/012054

    Article  Google Scholar 

  11. Zamanlooy, B., Mirhassani, M.: Efficient VLSI implementation of neural networks with hyperbolic tangent activation function. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 22(1), 39–48 (2014). https://doi.org/10.1109/TVLSI.2012.2232321

    Article  Google Scholar 

  12. Robles, M.C., Serrano, L.: A novel CMOS current-mode fully differential tanh (x) implementation. In: IEEE International Symposium on Circuits and Systems 2008, pp. 2158–2161 (2008). https://doi.org/10.1109/ISCAS.2008.4541878

  13. Sanchez-Sinencio, E., Silva-Martinez, J.: CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc. Circ. Devices Syst. 147(1), 3–12 (2000). https://doi.org/10.1049/ip-cds:20000055

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjana Datta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Datta, D., Agarwal, S., Kumar, V., Raj, M., Ray, B., Banerjee, A. (2019). Design of Current Mode Sigmoid Function and Hyperbolic Tangent Function. In: Sengupta, A., Dasgupta, S., Singh, V., Sharma, R., Kumar Vishvakarma, S. (eds) VLSI Design and Test. VDAT 2019. Communications in Computer and Information Science, vol 1066. Springer, Singapore. https://doi.org/10.1007/978-981-32-9767-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9767-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9766-1

  • Online ISBN: 978-981-32-9767-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics