Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Chimera Grids to Describe Boundaries of Complex Shape

  • Conference paper
  • First Online:
Intelligent Decision Technologies

Abstract

Stress-strain analysis of railway using computer simulation and full-wave modeling of ultrasonic non-destructive testing require significant computing resources. In addition to this, the complex shape of the rail can be noted. The use of computational Chimera grids might be a solution to this problem, because it reduces the amount of computing resources. The background computational grids are structured grids with a constant coordinate step, and the Chimera curvilinear structured grid is a thin layer surrounding the outer boundary of the rail and accurately describing its shape. Interpolation is performed between different types of computational grids. The process of interpolation by points of a quadrangle of an arbitrary shape is considered in detail in this work. We used the grid-characteristic numerical method on structured curvilinear and regular grids, respectively, to carry out the calculations. The results of simulation the propagation of ultrasonic waves in a rail are presented in the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vaiciunas, G.: Assessment of railway development in Baltic Sea region. In: Transport Means—Proceedings of the International Conference, pp. 790–796. Kaunas University of Technology, Kaunas (2020)

    Google Scholar 

  2. Berger, M.J., Joseph, E.O.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)

    Article  MathSciNet  Google Scholar 

  3. Steger, J.L.: A chimera grid scheme: advances in grid generation. Am. Soc. Mech. Eng. Fluids Eng. Div. 5, 55–70 (1983)

    Google Scholar 

  4. Khokhlov, N., Favorskaya, A., Stetsyuk, V., Mitskovets, I.: Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones. J. Comput. Phys. 446, 110637 (2021)

    Google Scholar 

  5. Favorskaya, A., Khokhlov, N.: Accounting for curved boundaries in rocks by using curvilinear and Chimera grids. Procedia Comput. Sci. 192, 3787–3794 (2021)

    Article  Google Scholar 

  6. Landinez, G., Rueda, S., Lora-Clavijo, F.D.: First steps on modelling wave propagation in isotropic-heterogeneous media: Numerical simulation of P–SV waves. Eur. J. Phys. 42(6), 065001 (2021)

    Google Scholar 

  7. Cuenca, E., Ducousso, M., Rondepierre, A., Videau, L., Cuvillier, N., Berthe, L., Coulouvrat, F.: Propagation of laser-generated shock waves in metals: 3D axisymmetric simulations compared to experiments. J. Appl. Phys. 128(24), 244903 (2020)

    Google Scholar 

  8. Benatia, N., El Kacimi, A., Laghrouche, O., El Alaoui Talibi, M., Trevelyan, J.: Frequency domain Bernstein-Bézier finite element solver for modelling short waves in elastodynamics. Appl. Math. Model. 102, 115–136 (2022)

    Article  MathSciNet  Google Scholar 

  9. Favorskaya, A.V., Petrov, I.B.: Combination of grid-characteristic method on regular computational meshes with discontinuous Galerkin method for simulation of elastic wave propagation. Lobachevskii J Math 42(7), 1652–1660 (2021)

    Article  MathSciNet  Google Scholar 

  10. Fomenko, S.I., Golub, M.V., Doroshenko, O.V., Wang, Y., Zhang, C.: An advanced boundary integral equation method for wave propagation analysis in a layered piezoelectric phononic crystal with a crack or an electrode. J. Comput. Phys. 447, 110669 (2021)

    Google Scholar 

  11. Golubev, V.I., Shevchenko, A.V., Petrov, I.B.: Application of the Dorovsky model for taking into account the fluid saturation of geological media. J. Phys. Conf. Ser. 1715(1), 012056 (2021)

    Google Scholar 

  12. Favorskaya, A.V., Khokhlov, N.I.: Types of elastic and acoustic wave phenomena scattered on gas- and fluid-filled fractures. Procedia Comput. Sci. 176, 2556–2565 (2020)

    Article  Google Scholar 

  13. Favorskaya, A., Golubev, V.: Study of anisotropy of seismic response from fractured media. Smart Innovation Syst. Technol. 238, 231–240 (2021)

    Article  Google Scholar 

  14. Muratov, M.V., Ryazanov, V.V., Biryukov, V.A., Petrov, D.I., Petrov, I.B.: Inverse problems of heterogeneous geological layers exploration seismology solution by methods of machine learning. Lobachevskii J. Math. 42(7), 1728–1737 (2021)

    Article  MathSciNet  Google Scholar 

  15. Muratov, M.V., Petrov, D.I., Biryukov, V.A.: The solution of fractures detection problems by methods of machine learning. Smart Innovation Syst. Technol. 215, 211–221 (2021)

    Article  Google Scholar 

  16. Nikitin, I.S., Golubev, V.I., Ekimenko, A.V., Anosova, M.B.: Simulation of seismic responses from the 3D non-linear model of the Bazhenov formation. IOP Conf. Ser. Mater. Sci. Eng. 927(1), 012020 (2020)

    Google Scholar 

  17. Favorskaya, A.V., Kabisov, S.V., Petrov, I.B.: Modeling of ultrasonic waves in fractured rails with an explicit approach. Dokl. Math. 98(1), 401–404 (2018)

    Article  MathSciNet  Google Scholar 

  18. Favorskaya, A., Petrov, I.: A novel method for investigation of acoustic and elastic wave phenomena using numerical experiments. Theor. Appl. Mech. Lett. 10(5), 307–314 (2020)

    Article  Google Scholar 

  19. Beklemysheva, K., Golubev, V., Petrov, I., Vasyukov, A.: Determining effects of impact loading on residual strength of fiber-metal laminates with grid-characteristic numerical method. Chin. J. Aeronaut. 34(7), 1–12 (2021)

    Article  Google Scholar 

  20. Petrov, I.B., Muratov, M.V., Sergeev, F.I.: Elastic wave propagation modeling during exploratory drilling on artificial ice island. Smart Innovation Syst. Technol. 217, 171–183 (2021)

    Article  MathSciNet  Google Scholar 

  21. Favorskaya, A., Petrov, I.: Calculation of the destruction of ice structures by the grid-characteristic method on structured grids. Procedia Comput. Sci. 192, 3768–3776 (2021)

    Article  Google Scholar 

  22. Petrov, I.B., Golubev, V.I., Petrukhin, V.Y., Nikitin, I.S.: Simulation of seismic waves in anisotropic media. Dokl. Math. 103(3), 146–150 (2021)

    Article  MathSciNet  Google Scholar 

  23. Golubev, V.: The grid-characteristic method for applied dynamic problems of fractured and anisotropic media. CEUR Workshop Proc. 3041, 32–37 (2021)

    Google Scholar 

  24. Beklemysheva, K., Vasyukov, A., Ermakov, A.: Grid-characteristic numerical method for medical ultrasound. J. Phys. Conf. Ser. 2090(1), 012164 (2021)

    Google Scholar 

  25. Kozhemyachenko, A.A., Petrov, I.B., Favorskaya, A.V., Khokhlov, N.I.: Boundary conditions for modeling the impact of wheels on railway track. Comput. Math. Math. Phys. 60(9), 1539–1554 (2020)

    Article  MathSciNet  Google Scholar 

  26. Nozhenko, O., Gorbunov, M., Vaičiunas, G., Porkuian, O.: Preconditions for creating a methodology for diagnosing of increase dynamic impact a rolling stock on the rail. In: Transport Means—Proceedings of the International Conference, pp. 1591–1595. Kaunas University of Technology, Kaunas (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been performed with the financial support of the Russian Science Foundation (project No. 20-71-10028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena V. Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Favorskaya, A.V., Khokhlov, N. (2022). Using Chimera Grids to Describe Boundaries of Complex Shape. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds) Intelligent Decision Technologies. Smart Innovation, Systems and Technologies, vol 309. Springer, Singapore. https://doi.org/10.1007/978-981-19-3444-5_22

Download citation

Publish with us

Policies and ethics