Nothing Special   »   [go: up one dir, main page]

Skip to main content

Pulse Wave Recognition of Pregnancy at Three Stages Based on 1D CNN and GRU

  • Conference paper
  • First Online:
Bio-Inspired Computing: Theories and Applications (BIC-TA 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1566))

  • 763 Accesses

Abstract

The aim of the present study is to achieve the discrimination of pulse at each stage of pregnancy by 1D convolutional neural network (1D CNN) and gated recurrent unit(GRU) classifier. Firstly, the pulse signals of Chi acquisition position were collected from 160 healthy pregnancy women. Secondly, a new deep learning classifier was proposed by combining 1D CNN and GRU technologies for pulse classification that learns the representation directly from the wave signal. Finally, the classifier proposed is used to classify the pregnancy pulse at three stages of pregnancy. The classifier proposed combines the advantages of CNN and GRU, which greatly improve the accuracy of pregnancy pulse identification. The classification accuracy of three stages of pregnancy pulse achieved satisfactory accuracy of 85%, 88% and 86%, respectively. Furthermore, the average sensitivity, precision and F1-score can reach 88.18%, 86.25% and 87.42%, respectively. The experiment results demonstrated that the method has a good recognition effect and promoted the objective development of TCM.

Supported by national key R&D program of China (2020YFC2006100) and key project at central government level: the ability establishment of sustainable use for valuable Chinese medicine resources (2060302-2101-16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wei, M., Chen, Z., Chen, G., et al.: A portable three-channel data collector for Chinese medicine pulses. Sens. Actuators A Phys. 323(1), 112669 (2021)

    Article  Google Scholar 

  2. Wu, H.K., Ko, Y.S., Lin, Y.S., Wu, H.T., Tsai, T.H., Chang, H.H.: The Correlation between pulse diagnosis and constitution identification in traditional Chinese medicine. Complement. Ther. Med. 30, 107–112 (2017)

    Article  Google Scholar 

  3. Velik, R.: An objective review of the technological developments for radial pulse diagnosis in traditional Chinese medicine. Eur. J. Integr. Med. 7(4), 321–331 (2015)

    Article  Google Scholar 

  4. Nie, J., Ji, M., Chu, Y., et al.: Human pulses reveal health conditions by a piezoelectret sensor via the approximate entropy analysis. Nano Energy 58, 528–535 (2019)

    Article  Google Scholar 

  5. Qiao, L., Qi, Z., Tu, L., et al.: The association of radial artery pulse wave variables with the pulse wave velocity and echocardiographic parameters in hypertension. Evid. Based Complement. Alter. Med. 2018, 1–12 (2018)

    Google Scholar 

  6. Moura, N.G.R., Ferreira, A.S.: Pulse waveform analysis of Chinese pulse images and its association with disability in hypertension. J. Acupunct. Meridian Stud. 9(2), 93–98 (2016)

    Article  Google Scholar 

  7. Chen, H.Q., Zou, S.H., Yang, J.B., et al.: A survey and analysis of using traditional Chinese medicine during pregnancy. Inter. J. Clin. Exper. Med. 8(10), 19496 (2015)

    Google Scholar 

  8. Tsai, Y.N., Huang, Y.C., Lin, S.J.S., et al.: Different harmonic characteristics were found at each location on TCM radial pulse diagnosis by spectrum analysis. Evid. Based Complement. Altern. Med. 2018, 1–11 (2018)

    Article  Google Scholar 

  9. Jakes, A., Wade, J., Vowles, Z., et al.: Validation of the BPro radial pulse waveform acquisition device in pregnancy and gestational hypertensive disorders. Blood Press. Monit. 26(5), 380–384 (2021)

    Article  Google Scholar 

  10. Varshavsky, J.R., Robinson, J.F., Zhou, Y., et al.: Association of polybrominated diphenyl ether (PBDE) levels with biomarkers of placental development and disease during mid-gestation. Environ. Health 19, 1–16 (2020)

    Article  Google Scholar 

  11. Su, F., Li, Z., Sun, X., et al.: The pulse wave analysis of normal pregnancy: investigating the gestational effects on photoplethysmographic signals. Bio-med. Mater. Eng. 24(1), 209–219 (2014)

    Article  Google Scholar 

  12. Stirrat, L.I., Walker, J.J., Stryjakowska, K., et al.: Pulsatility of glucocorticoid hormones in pregnancy: changes with gestation and obesity. Clin. Endocrinol. 88(4), 592–600 (2018)

    Article  Google Scholar 

  13. Fernandez, L.A., Sousa, A.K.S., Doi, L.M., et al.: Analysis of ocular pulse amplitude values in different pregnancy stages as measured by dynamic contour tonometry. CLEVER Clin. Exper. Vis. Eye Res. 1(1), 14–18 (2018)

    Article  Google Scholar 

  14. Zhang, L., Meng, X., Wang, Y., et al.: Mode energy ratio analysis using pulse signals for diagnosis of pregnancy conditions. In: 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing, pp. 479–482 (2019)

    Google Scholar 

  15. Tang, A.C.Y., Chung, J.W.Y., Wong, T.K.S.: Validation of a novel traditional Chinese medicine pulse diagnostic model using an artificial neural network. Evid. Based Complement. Altern. Med. 2012, 1–7 (2012)

    Google Scholar 

  16. Zhang, Q., Bai, C., Chen, Z., et al.: Smart Chinese medicine for hypertension treatment with a deep learning model. J. Netw. Comput. Appl. 129, 1–8 (2019)

    Article  Google Scholar 

  17. Guo, R., Wang, Y., Yan, H., et al.: Analysis and recognition of traditional Chinese medicine pulse based on the Hilbert-Huang transform and random forest in patients with coronary heart disease. Evid. Based Complement. Altern. Med. 2015, 1–8 (2015)

    Google Scholar 

  18. Hu, Q., Yu, T., Li, J., et al.: End-to-end syndrome differentiation of Yin deficiency and Yang deficiency in traditional Chinese medicine. Comput. Meth. Prog. Biomed. 174, 9–15 (2019)

    Article  Google Scholar 

  19. Chen, Z., Huang, A., Qiang, X.: Improved neural networks based on genetic algorithm for pulse recognition. Comput. Biol. Chem. 88, 107315 (2020)

    Article  Google Scholar 

  20. Chen, J., Huang, H., Hao, W., et al.: A machine learning method correlating pulse pressure wave data with pregnancy. Inter. J. Num. Meth. Biomed. Eng. 36(1), e3272 (2020)

    Google Scholar 

  21. Li, N., Jiao, Y., Mao, X., Zhao, Y., Yao, G., Huang, L.: Analysis of pregnancy pulse discrimination based on wrist pulse by 1D CNN. In: Pan, L., Pang, S., Song, T., Gong, F. (eds.) BIC-TA 2020. CCIS, vol. 1363, pp. 336–346. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1354-8_23

    Chapter  Google Scholar 

  22. Li, K., Zhang, S., Chi, Z., et al.: Arterial pulse waveform characteristics difference between the three trimesters of healthy pregnant women. In: 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5317–5320 (2018)

    Google Scholar 

  23. Li, N., Yu, J., Hu, H., et al.: The correlation study of Cun, Guan and Chi position based on wrist pulse characteristics. IEEE Access 9, 28917–28929 (2021)

    Article  Google Scholar 

  24. Liu, L., Zuo, W., Zhang, D., et al.: Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning. IEEE Trans. Inf. Technol. Biomed. 16(4), 598–606 (2012)

    Article  Google Scholar 

  25. Lu, X., Wu, Y., Yan, R., et al.: Pulse waveform analysis for pregnancy diagnosis based on machine learning. In: IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), pp. 1075–1079 (2018)

    Google Scholar 

  26. Wang, Y., Shi, X., Li, L., et al.: The impact of artificial intelligence on traditional Chinese medicine. Am. J. Chin. Med. 49, 1297–1314 (2021)

    Article  Google Scholar 

  27. Feng, C., Shao, Y., Wang, B., et al.: Development and application of artificial intelligence in auxiliary TCM diagnosis. Evid. Based Complement. Altern. Med., 1–8 (2021). ID 6656053

    Google Scholar 

  28. Chen, Z., Zhang, X.Y., Qiu, R.J.: Application of artificial intelligence in tongue diagnosis of traditional Chinese medicine: a review. TMR Mod. Herb. Med. 4(2), 14–30 (2021)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Affiliated Obstetrics and Gynecology Hospital of Fudan University for the facilities and all volunteers for their collaboration. This work was supported by National Key R&D Program of China (2020YFC2006100) and Key Project at Central Government Level: The ability establishment of sustainable use for valuable Chinese medicine resources (2060302-2101-16).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobo Mao or Luqi Huang .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, N., Yu, J., Mao, X., Zheng, P., Li, L., Huang, L. (2022). Pulse Wave Recognition of Pregnancy at Three Stages Based on 1D CNN and GRU. In: Pan, L., Cui, Z., Cai, J., Li, L. (eds) Bio-Inspired Computing: Theories and Applications. BIC-TA 2021. Communications in Computer and Information Science, vol 1566. Springer, Singapore. https://doi.org/10.1007/978-981-19-1253-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-1253-5_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-1252-8

  • Online ISBN: 978-981-19-1253-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics