Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Human Body Capacitance Sensing to Monitor Leg Motion Dominated Activities with a Wrist Worn Device

  • Conference paper
  • First Online:
Sensor- and Video-Based Activity and Behavior Computing

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 291))

  • 352 Accesses

Abstract

Inertial measurement unit (IMU) is currently the dominant sensing modality in sensor-based wearable human activity recognition. In this work, we explored an alternative wearable motion-sensing approach: inferring motion information of various body parts from the human body capacitance (HBC). While being less robust in tracking the body motions, HBC has a property that makes it complementary to IMU: It does not require the sensor to be placed directly on the moving part of the body of which the motion needs to be tracked. To demonstrate the value of HBC, we performed exercise recognition and counting of seven machine-free leg-alone exercises. The HBC sensing shows significant advantages over the IMU signals in both classification(0.89 vs 0.78 in F-score) and counting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Presta, E., Wang, J., Harrison, G.G., Björntorp, P., Harker, W.H., Van Itallie, T.B.: Measurement of total body electrical conductivity: a new method for estimation of body composition. Am. J. Clin. Nutrition 37(5), 735–739 (1983)

    Google Scholar 

  2. Bian, S., Rey, V.F., Younas, J., Lukowicz, P.: Wrist-worn capacitive sensor for activity and physical collaboration recognition. In: 2019 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 261–266. IEEE (2019)

    Google Scholar 

  3. Bonet, C.A., Areny, R.P.: A fast method to estimate body capacitance to ground. In: Proceedings of XX IMEKO World Congress 2012, September 9-14, Busan South Korea, pp. 1–4 (2012)

    Google Scholar 

  4. Greason, W.D.: Quasi-static analysis of electrostatic discharge (esd) and the human body using a capacitance model. J. Electrostatics 35(4), 349–371 (1995)

    Google Scholar 

  5. Bian, S., Lukowicz, P.: A systematic study of the influence of various user specific and environmental factors on wearable human body capacitance sensing. In: EAI International Conference on Body Area Networks. Springer, Berlin (2021)

    Google Scholar 

  6. Osamu Fujiwara and Takanori Ikawa. Numerical calculation of human-body capacitance by surface charge method. Electronics and Communications in Japan (Part I: Communications), 85(12):38–44, 2002

    Google Scholar 

  7. Jonassen, N.: Human body capacitance: static or dynamic concept?[esd]. In: Electrical Overstress/Electrostatic Discharge Symposium Proceedings. 1998 (Cat. No. 98TH8347), pp. 111–117. IEEE (1998)

    Google Scholar 

  8. Goad, N., Gawkrodger, D.J.: Ambient humidity and the skin: The impact of air humidity in healthy and diseased states. Journal of the European Academy of Dermatology and Venereology 30(8), 1285–1294 (2016)

    Article  Google Scholar 

  9. Egawa, Mariko, Oguri, Motoki, Kuwahara, Tomohiro, Takahashi, Motoji: Effect of exposure of human skin to a dry environment. Skin Research and Technology 8(4), 212–218 (2002)

    Article  Google Scholar 

  10. Zimmerman, T.G.: Personal area networks: near-field intrabody communication. IBM Syst. J. 35(3.4), 609–617 (1996)

    Google Scholar 

  11. Zimmerman, T.G., Smith, J.R., Paradiso, J.A., Allport, D., Gershenfeld, N.: Applying electric field sensing to human-computer interfaces. In: CHI, vol. 95, pp. 280–287. Citeseer (1995)

    Google Scholar 

  12. Cohn, G., Morris, D., Patel, S., Tan, D.: Humantenna: using the body as an antenna for real-time whole-body interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1901–1910. ACM (2012)

    Google Scholar 

  13. Bian, S., Rey, V.F., Hevesi, P., Lukowicz, P.: Passive capacitive based approach for full body gym workout recognition and counting. In: 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 1–10. IEEE (2019)

    Google Scholar 

  14. Hirsch, M., Cheng, J., Reiss, A., Sundholm, M., Lukowicz, P., Amft, O.: Hands-free gesture control with a capacitive textile neckband. In: Proceedings of the 2014 ACM International Symposium on Wearable Computers, pp. 55–58 (2014)

    Google Scholar 

  15. Sizhen, B., Lukowicz, P.: Capacitive sensing based on-board hand gesture recognition with tinyml. In: Adjunct Proceedings of the 2021 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2021 ACM International Symposium on Wearable Computers (2021)

    Google Scholar 

  16. Arshad, A., Khan, S., Zahirul Alam, A.H.M., Abdul Kadir, K., Tasnim, R., Ismail, A.F.: A capacitive proximity sensing scheme for human motion detection. In: 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–5. IEEE (2017)

    Google Scholar 

  17. Wahjudi, F., Lin, F.J.: Imu-based walking workouts recognition. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), pp. 251–256. IEEE (2019)

    Google Scholar 

  18. Chang, K.-H., Chen, M.Y., Canny, J.: Tracking free-weight exercises. In: International Conference on Ubiquitous Computing, pp. 19–37. Springer, Berlin (2007)

    Google Scholar 

  19. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Iberian Conference on Pattern Recognition and Image Analysis, pp. 289–296. Springer, Berlin (2011)

    Google Scholar 

  20. Feng, Z., Mo, L., Li, M.: A random forest-based ensemble method for activity recognition. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5074–5077. IEEE (2015)

    Google Scholar 

  21. Bayat, A., Pomplun, M., Tran, D.A.: A study on human activity recognition using accelerometer data from smartphones. Proc. Comput. Sci. 34, 450–457 (2014)

    Google Scholar 

  22. Nurwulan, N.R., Selamaj, G.: Random forest for human daily activity recognition. J. Phys.: Conf. Ser. 1655, 012087 (IOP Publishing, 2020)

    Google Scholar 

  23. SciPy.org. Find peaks inside a signal based on peak properties

    Google Scholar 

  24. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote. synthetic minority over-sampling technique. J. Artif. Intelligence Res. 16, 321–357 (2002)

    Google Scholar 

  25. Chen, K., Zhang, D., Yao, L., Guo, B., Yu, Z., Liu, Y.: Deep learning for sensor-based human activity recognition: overview, challenges and opportunities. arXiv preprint arXiv:2001.07416 (2020)

  26. Wang, L., Gjoreskia, H., Murao, K., Okita, T., Roggen, D.: Summary of the sussex-huawei locomotion-transportation recognition challenge. In: Proceedings of the 2018 ACM international joint conference and 2018 international symposium on pervasive and ubiquitous computing and wearable computers, pp. 1521–1530 (2018)

    Google Scholar 

  27. Wang, L., Gjoreskia, H., Mathias, C., Paula, L., Kazuya, M., Tsuyoshi, O., Roggen, D.: Summary of the sussex-huawei locomotion-transportation recognition challenge 2019. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, pp. 849–856 (2019)

    Google Scholar 

  28. Wang, L., Gjoreski, H., Ciliberto, M., Lago, P., Murao, K., Okita, T., Roggen, D.: Summary of the sussex-huawei locomotion-transportation recognition challenge 2020. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, pp. 351–358 (2020)

    Google Scholar 

  29. Ordóñez, F., Roggen, D.: Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors 16(1), 115 (2016)

    Google Scholar 

  30. Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)

    Google Scholar 

  31. Zappi, P., Lombriser, C., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity recognition from on-body sensors: accuracy-power trade-off by dynamic sensor selection. In: European Conference on Wireless Sensor Networks, pp. 17–33. Springer, Berlin (2008)

    Google Scholar 

  32. STRCWearlab. Deepconvlstm

    Google Scholar 

  33. Qin, Z., Zhang, Y., Meng, S., Qin, z., Choo, K.-K.R.: Imaging and fusing time series for wearable sensor-based human activity recognition. Information Fusion 53, 80–87 (2020)

    Google Scholar 

  34. Chollet, F., et al.: Keras. https://keras.io (2015)

  35. Cho, H., Yoon, S.: Divide and conquer-based 1d cnn human activity recognition using test data sharpening. Sensors 18(4), 1055 (2018)

    Google Scholar 

  36. Cruciani, F., Vafeiadis, A., Nugent, C., Cleland, I., McCullagh, P., Votis, K., Giakoumis, D., Tzovaras, D., Chen, L., Hamzaoui, R.: Feature learning for human activity recognition using convolutional neural networks. CCF Trans. Pervasive Comput. Interaction 2(1), 18–32 (2020)

    Google Scholar 

  37. TensorFlow Teams. https://tf.keras.layers.conv1d

  38. Missinglink.ai. Keras conv1d: Working with 1d convolutional neural networks in keras

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sizhen Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bian, S., Yuan, S., Rey, V.F., Lukowicz, P. (2022). Using Human Body Capacitance Sensing to Monitor Leg Motion Dominated Activities with a Wrist Worn Device. In: Ahad, M.A.R., Inoue, S., Roggen, D., Fujinami, K. (eds) Sensor- and Video-Based Activity and Behavior Computing. Smart Innovation, Systems and Technologies, vol 291. Springer, Singapore. https://doi.org/10.1007/978-981-19-0361-8_5

Download citation

Publish with us

Policies and ethics