Nothing Special   »   [go: up one dir, main page]

Skip to main content

Edge Computing as an Architectural Solution: An Umbrella Review

  • Conference paper
  • First Online:
Edge Analytics

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 869))

  • 658 Accesses

Abstract

Cloud computing architecture and cloud service applications follow a centralized architecture with bottlenecks in the cloud infrastructure. This infrastructure is significantly affected when services respond to many heterogeneous end devices because of the limitations of bandwidth and the servers’ workload; consequently, it introduces a high latency. The advantages of using content delivery networks are to speed up web performance by caching web content on edge nodes near the user. However, there are challenges with streaming data. Researchers create an intermediary infrastructure to store, secure, and compute end devices’ services became a new concept called edge computing. Edge computing can leverage applications that are sensitive to latency. However, other issues appear, such as security and deployability. This paper reviewed the literature to analyze edge computing as an architectural solution and identify the underlying architectural quality attributes, tactics, and strategies. The performance quality attribute drives the edge architecture, mainly to reduce the latency and jitter concerns. The quality requirements are addressed by caching, migration, and virtualization strategies. However, the solution introduces other quality attribute concerns such as security, deployment, and scalability. This paper is a first approach for unveiling the rationale behind edge computation from an architectural viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed E, Rehmani MH (2017) Mobile edge computing: opportunities, solutions, and challenges [Primary Study]

    Google Scholar 

  2. Bandi A, Fellah A (2017) Design issues for converting websites to mobile sites and apps: a case study. In: 2017 international conference on computing methodologies and communication (ICCMC), pp 652–656. https://doi.org/10.1109/ICCMC.2017.8282547

  3. Bass L, Clements P, Kazman R (2012) Software architecture in practice, 3rd edn. Addison-Wesley Professional

    Google Scholar 

  4. Chen J, Ran X (2019) Deep learning with edge computing: a review. Proc IEEE 107(8):1655–1674 [Primary Study]

    Google Scholar 

  5. Dolui K, Datta SK (2017) Comparison of edge computing implementations: fog computing, cloudlet and mobile edge computing. In: 2017 global internet of things summit (GIoTS), pp 1–6

    Google Scholar 

  6. Harrison NB, Avgeriou P (2010) How do architecture patterns and tactics interact? A model and annotation. J Syst Softw 83(10):1735–1758. https://doi.org/10.1016/j.jss.2010.04.067

    Article  Google Scholar 

  7. Hilt V, Sparks K (2019) Future edge clouds. Bell Labs Tech J 24:1–17

    Article  Google Scholar 

  8. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing-a key technology towards 5G. ETSI White Paper 11(11):1–16

    Google Scholar 

  9. Khan WZ, Ahmed E, Hakak S, Yaqoob I, Ahmed A (2019) Edge computing: a survey. Future Gener Comput Syst 97:219–235. https://doi.org/10.1016/j.future.2019.02.050

    Article  Google Scholar 

  10. Lewis G, Lago P (2015) A catalog of architectural tactics for cyber-foraging. In: 2015 11th international ACM SIGSOFT conference on quality of software architectures (QoSA), pp 53–62

    Google Scholar 

  11. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656 [Primary Study]

    Google Scholar 

  12. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing: the communication perspective. IEEE Commun Surv Tutor 19(4):2322–2358 [Primary Study]

    Google Scholar 

  13. Marapareddy R, Bandi A, Tirumala SS (2012) Cloud computing architectures: a retrospective study. J Innov Comput Sci Eng 2(1):1–5

    Google Scholar 

  14. Morris I (2016) ETSI drops “mobile” from MEC. Light Reading

    Google Scholar 

  15. Newman P. The internet of things 2020: here’s what over 400 IoT decision-makers say about the future of enterprise connectivity and how IoT companies can use it to grow revenue. https://www.businessinsider.com/internet-of-things-report?r=US&IR=T

  16. Ni J, Zhang K, Lin X, Shen XS (2017) Securing fog computing for internet of things applications: Challenges and solutions. IEEE Commun Surv Tutor 20(1):601–628 [Primary Study]

    Google Scholar 

  17. Osses F, Márquez G, Astudillo H (2018) Exploration of academic and industrial evidence about architectural tactics and patterns in microservices. In: Proceedings of the 40th international conference on software engineering: companion proceedings. ICSE ’18, Association for Computing Machinery, New York, NY, USA, pp 256–257. https://doi.org/10.1145/3183440.3194958

  18. Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39 [Primary Study]

    Google Scholar 

  19. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case for VM-based cloudlets in mobile computing. IEEE Pervas Comput 8(4):14–23

    Article  Google Scholar 

  20. Sheng J, Hu J, Teng X, Wang B, Pan X (2019) Computation offloading strategy in mobile edge computing. Information 10(6):191. https://doi.org/10.3390/info10060191

    Article  Google Scholar 

  21. Sittón-Candanedo I, Alonso RS, Corchado JM, Rodríguez-González S, Casado-Vara R (2019) A review of edge computing reference architectures and a new global edge proposal. Future Gener Comput Syst 99:278–294 [Primary Study]

    Google Scholar 

  22. Solutions CFC (2015) Unleash the power of the internet of things. Cisco Systems Inc

    Google Scholar 

  23. Taleb T, Samdanis K, Mada B, Flinck H, Dutta S, Sabella D (2017) On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun Surv Tutor 19(3):1657–1681 [Primary Study]

    Google Scholar 

  24. Turner JR, Baker R, Kellner F (2018) Theoretical literature review: tracing the life cycle of a theory and its verified and falsified statements. Hum Resour Dev Rev 17(1):34–61. https://doi.org/10.1177/1534484317749680

    Article  Google Scholar 

  25. Ud Din I, Guizani M, Hassan S, Kim B, Khurram Khan M, Atiquzzaman M, Ahmed SH (2019) The internet of things: a review of enabled technologies and future challenges. IEEE Access 7:7606–7640

    Article  Google Scholar 

  26. Wang F, Diao B, Sun T, Xu Y (2020) Data security and privacy challenges of computing offloading in fins. IEEE Netw 34(2):14–20

    Article  Google Scholar 

  27. Yi S, Hao Z, Qin Z, Li Q (2015) Fog computing: platform and applications. In: 2015 third IEEE workshop on hot topics in web systems and technologies (HotWeb). IEEE, pp 73–78

    Google Scholar 

  28. Yousafzai A, Yaqoob I, Imran M, Gani A, Noor RM (2020) Process migration-based computational offloading framework for IoT-supported mobile edge/cloud computing. IEEE Internet Things J 7(5):4171–4182. https://doi.org/10.1109/JIOT.2019.2943176

    Article  Google Scholar 

  29. Yousefpour A, Fung C, Nguyen T, Kadiyala K, Jalali F, Niakanlahiji A, Kong J, Jue JP (2019) All one needs to know about fog computing and related edge computing paradigms: a complete survey. J Syst Archit 98:289–330

    Article  Google Scholar 

  30. Zhao L, Sun W, Shi Y, Liu J (2018) Optimal placement of cloudlets for access delay minimization in SDN-based internet of things networks. IEEE Internet Things J 5(2):1334–1344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Bandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bandi, A., Hurtado, J.A. (2022). Edge Computing as an Architectural Solution: An Umbrella Review. In: Patgiri, R., Bandyopadhyay, S., Borah, M.D., Emilia Balas, V. (eds) Edge Analytics. Lecture Notes in Electrical Engineering, vol 869. Springer, Singapore. https://doi.org/10.1007/978-981-19-0019-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-0019-8_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-0018-1

  • Online ISBN: 978-981-19-0019-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics