Abstract
Recognizing military coordination relationships among adversarial operations is essential in task planning and decision making. Due to the complexity of modern informationized war, it is challenging to analyze the diverse relations between entities in the war situation. In this study, we propose a novel framework based on knowledge graph to predict operational coordinations. We first construct a novel large scale knowledge graph that consits of 29313 nodes and 191542 edges from Wargame Competition dataset. The embedding method jointly considers information from node attributes, local situations and global structure, and then combine the three parts with a self-attention mechanism. Experiments compared with baselines demonstrate that the proposed model is more accurate and robust than existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hu, X., Si, G., Wu, L., et al.: Wargaming and Simulation Principle and System. National Defense University Press, Beijing (2009)
Wang, B., Wu, L., Hu, X., et al.: Knowledge representation method of joint operation situation based on knowledge graph. J. Syst. Simul. 31(11), 2228 (2019)
Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, pp. 701–710. Association for Computing Machinery, New York (2014). https://doi.org/10.1145/2623330.2623732
Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 855–864. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2939672.2939754
Dekker, A.H.: Analyzing C2 structures and self-synchronization with simple computational models. Technical report, Defence Science and Technology Organisation (Australia) Joint Operations (2011)
Liu, X., Zhao, M., Dai, S., Yin, Q., Ni, W.: Tactical intention recognition in wargame. In: 2021 IEEE 6th International Conference on Computer and Communication Systems (ICCCS), pp. 429–434(2021)
Goodman, J., Risi, S., Lucas, S.: AI and wargaming. arXiv preprint arXiv:2009.08922 (2020)
Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, WWW 2015, pp. 1067–1077. International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE (2015). https://doi.org/10.1145/2736277.2741093
Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning with rich text information. In: Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI 2015, pp. 2111–2117. AAAI Press (2015)
Cen, Y., Zou, X., Zhang, J., Yang, H., Zhou, J., Tang, J.: Representation learning for attributed multiplex heterogeneous network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1358–1368. Association for Computing Machinery (2019)
Wu, W., Hu, X., Guo, S., et al.: Analysis of combat SoS coordination based on multi-layered temporal networks. Complex Syst. Complex. Sci. 14(2), 1–10 (2017)
Lin, Z., et al.: A structured self-attentive sentence embedding. arXiv preprint arXiv:1703.03130 (2017)
Zhang, H., Qiu, L., Yi, L., Song, Y.: Scalable multiplex network embedding. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 3082–3088. AAAI Press (2018)
Shi, C., Hu, B., Zhao, W.X., Philip, S.Y.: Heterogeneous information network embedding for recommendation. IEEE Trans. Knowl. Data Eng. 31(2), 357–370 (2018)
Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174 (2015)
Zhu, T., Chang, G., Zhang, S., et al.: Research on model of command and control information coorperation based on complex networks. J. Syst. Simul. 20(22), 6058–6060 (2008)
Deller, S., Bowling, S.R., Rabadi, G.A., Tolk, A., Bell, M.I.: Applying the information age combat model: quantitative analysis of network centric operations. Int. C2 J. 3(1), 1–25 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Song, C. et al. (2022). A Knowledge Graph Based Approach to Operational Coordination Recognition in Wargame. In: Fan, W., Zhang, L., Li, N., Song, X. (eds) Methods and Applications for Modeling and Simulation of Complex Systems. AsiaSim 2022. Communications in Computer and Information Science, vol 1712. Springer, Singapore. https://doi.org/10.1007/978-981-19-9198-1_38
Download citation
DOI: https://doi.org/10.1007/978-981-19-9198-1_38
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-9197-4
Online ISBN: 978-981-19-9198-1
eBook Packages: Computer ScienceComputer Science (R0)